баннер
Дом

Климатическая испытательная камера

архивы
ТЕГИ

Климатическая испытательная камера

  • Краткое обсуждение использования и обслуживания камеры для испытаний на воздействие окружающей среды
    May 10, 2025
    Ⅰ. Правильное использование LABCOMPANIONИнструментОборудование для испытаний на воздействие окружающей среды остается типом точного и ценного инструмента. Правильная эксплуатация и использование не только предоставляют точные данные для персонала, проводящего испытания, но и обеспечивают долгосрочную нормальную работу и продлевают срок службы оборудования. Во-первых, перед проведением испытаний на воздействие окружающей среды необходимо ознакомиться с эксплуатационными характеристиками тестовых образцов, условиями испытаний, процедурами и методами. Полное понимание технических характеристик и структуры испытательного оборудования, в частности, работы и функциональности контроллера, имеет решающее значение. Внимательное прочтение руководства по эксплуатации оборудования может предотвратить неисправности, вызванные эксплуатационными ошибками, которые могут привести к повреждению образца или неточным данным испытаний. Во-вторых, выберите подходящее испытательное оборудование. Чтобы обеспечить плавное выполнение теста, следует выбрать подходящее оборудование на основе характеристик тестовых образцов. Следует поддерживать разумное соотношение между объемом образца и эффективной емкостью испытательной камеры. Для теплорассеивающих образцов объем не должен превышать одной десятой эффективной емкости камеры. Для ненагревающихся образцов объем не должен превышать одной пятой. Например, 21-дюймовый цветной телевизор, проходящий испытание на температурное хранение, может хорошо поместиться в камере объемом 1 кубический метр, но при включении телевизора из-за выделения тепла требуется камера большего размера. В-третьих, правильно расположите тестовые образцы. Образцы следует размещать на расстоянии не менее 10 см от стенок камеры. Несколько образцов следует размещать на одной плоскости, насколько это возможно. Размещение не должно препятствовать выходу или входу воздуха, а вокруг датчиков температуры и влажности должно быть достаточно места для обеспечения точных показаний. В-четвертых, для испытаний, требующих дополнительных сред, правильный тип должен быть добавлен в соответствии со спецификациями. Например, вода, используемая в камеры для испытаний на влажность должны соответствовать определенным требованиям: удельное сопротивление не должно быть менее 500 Ом·м. Водопроводная вода обычно имеет удельное сопротивление 10–100 Ом·м, дистиллированная вода 100–10 000 Ом·м, а деионизированная вода 10 000–100 000 Ом·м. Поэтому для испытаний на влажность необходимо использовать дистиллированную или деионизированную воду, и она должна быть свежей, так как вода, подвергающаяся воздействию воздуха, поглощает углекислый газ и пыль, со временем снижая свое удельное сопротивление. Очищенная вода, доступная на рынке, является экономически эффективной и удобной альтернативой. Пятое, правильное использование камер для испытаний на влажность. Влажная марля или бумага, используемые в камерах влажности, должны соответствовать определенным стандартам — не любая марля может заменить их. Поскольку показания относительной влажности выводятся из разницы температур сухого и влажного термометров (строго говоря, также под влиянием атмосферного давления и потока воздуха), температура влажного термометра зависит от скорости поглощения и испарения воды, на которые напрямую влияет качество марли. Метеорологические стандарты требуют, чтобы влажная марля была специализированной «влажной марлей» из льна. Неправильная марля может привести к неточному контролю влажности. Кроме того, марля должна быть установлена ​​правильно: длиной 100 мм, плотно обернутой вокруг датчика, с датчиком, расположенным на 25–30 мм над чашкой с водой, и марлей, погруженной в воду, чтобы обеспечить точный контроль влажности. Ⅱ. Техническое обслуживание оборудования для испытаний на воздействие окружающей средыОборудование для испытаний на воздействие окружающей среды бывает разных типов, но наиболее часто используются высокотемпературные, низкотемпературные и влажностные камеры. В последнее время стали популярны комбинированные испытательные камеры температуры и влажности, объединяющие эти функции. Их сложнее ремонтировать, и они служат репрезентативными примерами. Ниже мы обсудим структуру, распространенные неисправности и методы устранения неисправностей для испытательных камер температуры и влажности. (1) Конструкция обычных испытательных камер для измерения температуры и влажностиПомимо правильной эксплуатации, испытательный персонал должен понимать структуру оборудования. Испытательная камера температуры и влажности состоит из корпуса камеры, системы циркуляции воздуха, системы охлаждения, системы отопления и системы контроля влажности. Система циркуляции воздуха обычно имеет регулируемое направление воздушного потока. Система увлажнения может использовать методы испарения на основе котла или поверхностного испарения. Система охлаждения и осушения использует холодильный цикл кондиционирования воздуха. Система отопления может использовать электрические нагреватели с ребрами или прямой нагрев проволочным сопротивлением. Методы измерения температуры и влажности включают тестирование по сухому-влажному термометру или прямые датчики влажности. Интерфейсы управления и отображения могут включать отдельные или комбинированные контроллеры температуры и влажности. (2) Распространенные неисправности и методы их устранения Камеры для испытаний на температуру и влажность1.Проблемы высокотемпературных испытаний Если температура не достигает заданного значения, проверьте электрическую систему на предмет неисправностей.Если температура повышается слишком медленно, проверьте систему циркуляции воздуха, убедившись, что заслонка правильно отрегулирована и двигатель вентилятора работает.Если происходит превышение температуры, перекалибруйте настройки ПИД.Если температура резко повышается, возможно, неисправен контроллер и его необходимо заменить. 2.Проблемы с испытаниями при низких температурах Если температура падает слишком медленно или восстанавливается после достижения определенной точки: Перед испытанием убедитесь, что камера предварительно высушена. Убедитесь, что образцы не переполнены и не препятствуют циркуляции воздуха. Если эти факторы исключены, то холодильной системе может потребоваться профессиональное обслуживание.Температурный скачок часто происходит из-за плохих условий окружающей среды (например, недостаточного зазора за камерой или высокой температуры окружающей среды). 3.Проблемы с испытанием на влажность Если влажность достигает 100% или значительно отклоняется от целевого значения: Для 100% влажности: Проверьте, сухая ли марля влажного термометра. Проверьте уровень воды в резервуаре датчика влажного термометра и в системе автоматической подачи воды. При необходимости замените или очистите затвердевшую марлю. Для низкой влажности: Проверьте подачу воды в систему увлажнения и уровень бойлера. Если они в норме, возможно, требуется профессиональный ремонт электрической системы управления. 4. Аварийные неисправности во время эксплуатации Если оборудование неисправно, на панели управления отобразится код ошибки со звуковым сигналом. Операторы могут обратиться к разделу по устранению неполадок в руководстве, чтобы определить проблему и организовать профессиональный ремонт для скорейшего возобновления тестирования. Другое оборудование для испытаний на воздействие окружающей среды может демонстрировать различные проблемы, которые следует анализировать и решать в каждом конкретном случае. Регулярное техническое обслуживание имеет важное значение, включая очистку конденсатора, смазку движущихся частей и проверку электрических элементов управления. Эти меры необходимы для обеспечения долговечности и надежности оборудования.
    ЧИТАТЬ ДАЛЕЕ
  • Руководство пользователя для оборудования для испытаний на воздействие окружающей среды
    Apr 26, 2025
    1. Основные понятияОборудование для испытаний на воздействие окружающей среды (часто называемое «климатическими испытательными камерами») имитирует различные условия температуры и влажности для проведения испытаний. С быстрым ростом новых отраслей, таких как искусственный интеллект, новая энергетика и полупроводники, строгие испытания на воздействие окружающей среды стали необходимыми для разработки и проверки продукции. Однако пользователи часто сталкиваются с трудностями при выборе оборудования из-за отсутствия специальных знаний. Ниже будут представлены основные параметры климатической испытательной камеры, которые помогут вам сделать лучший выбор продукции. 2. Основные технические характеристики(1) Параметры, связанные с температурой1. Диапазон температур Определение: Экстремальный диапазон температур, в котором оборудование может стабильно работать в течение длительного времени. Диапазон высоких температур: Стандартные высокотемпературные камеры: 200℃, 300℃, 400℃ и т.д. Камеры высокой и низкой температуры: высококачественные модели могут достигать температуры 150–180 ℃.Практические рекомендации: для большинства применений достаточно 130 ℃. Диапазон низких температур:Одноступенчатое охлаждение: около -40℃.Каскадное охлаждение: около -70℃.Бюджетные варианты: -20℃ или 0℃. 2. Колебание температуры Определение: Изменение температуры в любой точке рабочей зоны после стабилизации. Стандартное требование: ≤1℃ или ±0,5℃. Примечание: Чрезмерные колебания могут негативно повлиять на другие показатели температурной эффективности. 3. Равномерность температуры Определение: Максимальная разница температур между любыми двумя точками рабочей зоны. Стандартное требование: ≤2℃. Примечание: Поддержание такой точности становится затруднительным при высоких температурах (>200℃). 4. Отклонение температуры Определение: Средняя разница температур между центром рабочей зоны и другими точками. Стандартное требование: ±2℃ (или ±2% при высоких температурах). 5. Скорость изменения температуры Советы по покупке:Четко определите фактические требования к тестированию.Предоставьте подробную информацию об образце (размеры, вес, материал и т. д.).Запросить данные о производительности в условиях нагрузки. (Сколько продукции вы собираетесь протестировать за один раз?)Не полагайтесь исключительно на спецификации каталога. (2) Параметры, связанные с влажностью1. Диапазон влажности Ключевая особенность: Двойственный параметр, зависящий от температуры. Рекомендация: Сосредоточьтесь на том, можно ли стабильно поддерживать требуемый уровень влажности. 2. Отклонение влажности Определение: Равномерность распределения влажности в рабочей зоне. Стандартное требование: ±3%RH (±5%RH в зонах с низкой влажностью). (3) Другие параметры1. Скорость воздушного потока Обычно не является критическим фактором, если иное не указано в стандартах испытаний. 2. Уровень шума Стандартные значения:Камеры влажности: ≤75 дБ.Температурные камеры: ≤80 дБ. Рекомендации по офисной среде:Малое оборудование: ≤70 дБ.Крупное оборудование: ≤73 дБ. 3. Рекомендации по покупкеВыбирайте параметры на основе реальных потребностей — избегайте излишней детализации.Отдайте приоритет долгосрочной стабильности производительности.Запросите загруженные тестовые данные у поставщиков.Проверьте истинные эффективные размеры рабочей зоны.Заранее укажите особые условия использования (например, офисные помещения).
    ЧИТАТЬ ДАЛЕЕ
  • Сводка условий тестирования светодиодов
    Apr 22, 2025
    Что такое светодиод? Светодиод (LED) — это особый тип диода, который излучает монохроматический прерывистый свет при подаче прямого напряжения — явление, известное как электролюминесценция. Изменяя химический состав полупроводникового материала, светодиоды могут производить свет в диапазоне, близком к ультрафиолетовому, видимому или инфракрасному. Первоначально светодиоды в основном использовались в качестве индикаторных ламп и панелей индикации. Однако с появлением белых светодиодов они теперь также используются в осветительных приборах. Признанные новым источником света 21-го века, светодиоды обладают непревзойденными преимуществами, такими как высокая эффективность, длительный срок службы и долговечность по сравнению с традиционными источниками света. Классификация по яркости: Светодиоды стандартной яркости (изготовлены из таких материалов, как GaP, GaAsP) Светодиоды высокой яркости (изготовлены из AlGaAs) Светодиоды сверхвысокой яркости (изготовленные из других современных материалов) ☆ Инфракрасные диоды (IRED): излучают невидимый инфракрасный свет и используются в различных целях.   Обзор тестирования надежности светодиодов: Светодиоды были впервые разработаны в 1960-х годах и изначально использовались в светофорах и потребительских товарах. Только в последние годы они были приняты для освещения и в качестве альтернативных источников света. Дополнительные примечания по сроку службы светодиодов: Чем ниже температура перехода светодиода, тем дольше его срок службы, и наоборот. Срок службы светодиодов при высоких температурах: 10 000 часов при 74°C 25 000 часов при 63°C Светодиодные источники света, являясь промышленным изделием, должны иметь срок службы 35 000 часов (гарантированный срок службы). Срок службы традиционных лампочек обычно составляет около 1000 часов. Ожидается, что светодиодные уличные фонари прослужат более 50 000 часов. Краткое описание условий тестирования светодиодов: Испытание на температурный шок Ударная температура 1 Комнатная температура Ударная температура 2 Время восстановления Циклы Метод шока Замечания -20℃(5 мин) 2 90℃(5 мин)   2 Газовый шок   -30℃(5 мин) 5 105℃(5 мин)   10 Газовый шок   -30℃(30 мин)   105℃(30 мин)   10 Газовый шок   88℃(20 мин)   -44℃(20 мин)   10 Газовый шок   100℃(30 мин)   -40℃(30 мин)   30 Газовый шок   100℃(15 мин)   -40℃(15 мин) 5 300 Газовый шок HB-светодиоды 100℃(5 мин)   -10℃(5 мин)   300 Жидкий шок HB-светодиоды   Испытание светодиодов на воздействие высокой температуры и высокой влажности (испытание THB) Температура/Влажность Время Замечания 40℃/95% отн.влажности 96 часов   60℃/85% отн.влажности 500 Часов Тестирование срока службы светодиодов 60℃/90% отн.влажности 1000 Часов Тестирование срока службы светодиодов 60℃/95% отн.влажности 500 Часов Тестирование срока службы светодиодов 85℃/85%RH 50 часов   85℃/85%RH 1000 Часов Тестирование срока службы светодиодов   Испытание на долговечность при комнатной температуре 27℃ 1000 Часов Постоянное освещение при постоянном токе   Испытание на долговечность при высоких температурах (испытание HTOL) 85℃ 1000 Час Постоянное освещение при постоянном токе 100℃ 1000 Час Постоянное освещение при постоянном токе   Испытание на долговечность при низких температурах (испытание LTOL) -40℃ 1000 Час Постоянное освещение при постоянном токе -45℃ 1000 Час Постоянное освещение при постоянном токе   Тест на паяемость Условие теста Замечания Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 260 °C на 5 секунд.   Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 260+5 °C на 6 секунд.   Штыри светодиода (на расстоянии 1,6 мм от дна коллоида) погружаются в оловянную ванну при температуре 300 °C на 3 секунды.     Тест печи для пайки оплавлением 240℃ 10 секунд   Испытание на воздействие окружающей среды (провести обработку пайкой TTW в течение 10 секунд при температуре 240 °C ± 5 °C) Название теста Справочный стандарт См. содержание условий испытаний в JIS C 7021. Восстановление Номер цикла (H) Температурный цикл Автомобильная спецификация -40 °C ←→ 100 °C, с выдержкой 15 минут 5 минут 5/50/100 Температурный цикл   60 °C/95% RH, при подаче тока   50/100 Обратное смещение влажности Метод MIL-STD-883 60 °C/95% отн.влажности, 5 В RB   50/100  
    ЧИТАТЬ ДАЛЕЕ
  • Сравнение климатических испытаний и экологических испытаний Сравнение климатических испытаний и экологических испытаний
    Sep 19, 2024
    Сравнение климатических испытаний и экологических испытанийИспытание на климатическую среду - испытательная камера с постоянной температурой и влажностью, испытательная камера с высокой и низкой температурой, испытательная камера с холодным и горячим ударом, испытательная камера с влажным и переменным нагревом, испытательная камера с быстрым изменением температуры, испытательная камера с линейным изменением температуры, постоянная температура при входе камера для испытаний на влажность и т. д. Все они предусматривают контроль температуры.Поскольку на выбор имеется несколько точек контроля температуры, метод контроля температуры в климатической камере также имеет три решения: контроль температуры на входе, контроль температуры продукта и «каскадный» контроль температуры. Первые два — это одноточечный контроль температуры, а третий — двухпараметрический контроль температуры.Метод одноточечного контроля температуры очень развит и широко используется.Большинство ранних методов управления представляли собой переключательное управление «пинг-понг», широко известное как нагрев, когда холодно, и охлаждение, когда жарко. Этот режим управления является режимом управления с обратной связью. Когда температура циркулирующего воздушного потока превышает заданную температуру, электромагнитный клапан охлаждения открывается, чтобы подать холодный объем в циркулирующий воздушный поток и снизить температуру воздушного потока. В противном случае выключатель нагревательного устройства включается для непосредственного нагрева циркулирующего воздушного потока. Поднимите температуру воздушного потока. Этот режим управления требует, чтобы холодильное устройство и нагревательные компоненты испытательной камеры всегда находились в режиме ожидания, что не только тратит много энергии, но и контролируемый параметр (температура) всегда находится в состоянии «колебания», и точность управления невысокая.Теперь одноточечный метод контроля температуры в основном заменяется на универсальный метод пропорционально-дифференциально-интегрального (ПИД) управления, который может обеспечить коррекцию контролируемой температуры в соответствии с прошлым изменением контролируемого параметра (интегральное управление) и тенденцией изменения (дифференциальное управление). ), что не только экономит энергию, но и амплитуда «колебаний» мала, а точность управления высока.Двухпараметрический контроль температуры предназначен для одновременного сбора значения температуры воздухозаборника испытательной камеры и значения температуры рядом с продуктом. Воздухозаборник испытательной камеры расположен очень близко к месту установки испарителя и нагревателя в помещении модуляции воздуха, и его величина напрямую отражает результат модуляции воздуха. Использование этого значения температуры в качестве параметра управления с обратной связью имеет то преимущество, что позволяет быстро модулировать параметры состояния циркулирующего воздуха.Значение температуры рядом с продуктом указывает на реальные температурные условия окружающей среды, которым подвергается продукт, что является требованием спецификации испытаний на воздействие окружающей среды. Использование этого значения температуры в качестве параметра управления с обратной связью может обеспечить эффективность и достоверность температурного испытания на окружающую среду, поэтому этот подход учитывает преимущества обоих и требования фактического испытания. Стратегия двухпараметрического контроля температуры может представлять собой независимое «управление с разделением времени» двух групп температурных данных, или два взвешенных значения температуры могут быть объединены в одно значение температуры в качестве сигнала управления с обратной связью в соответствии с определенным весовым коэффициентом. а значение весового коэффициента связано с размером испытательной камеры, скоростью ветра циркулирующего воздушного потока, величиной скорости изменения температуры, тепловой мощностью работы продукта и другими параметрами.Поскольку теплообмен представляет собой сложный динамический физический процесс и на него сильно влияют условия атмосферной среды вокруг испытательной камеры, рабочее состояние самого испытуемого образца и сложность конструкции, сложно создать идеальную математическую модель для него. контроль температуры и влажности испытательной камеры. Чтобы повысить стабильность и точность управления, в управление некоторыми камерами температурных испытаний внедрены теория и метод управления нечеткой логикой. В процессе управления моделируется образ мышления человека, а прогнозирующее управление применяется для более быстрого управления космическим полем температуры и влажности.По сравнению с температурой выбор точек измерения и контроля влажности относительно прост. Во время циркуляции хорошо регулируемого влажного воздуха в испытательную камеру с высоко- и низкотемпературным циклом обмен молекулами воды между влажным воздухом, испытуемым образцом и четырьмя стенками испытательной камеры очень мал. Пока температура циркулирующего воздуха стабильна, поток циркулирующего воздуха от входа в испытательную камеру до выхода из испытательной камеры находится в процессе. Влажность влажного воздуха меняется очень мало. Таким образом, значение относительной влажности обнаруженного воздуха в любой точке поля потока циркулирующего воздуха в испытательной камере, например, на входе, в среднем потоке поля потока или на выходе возвратного воздуха, в основном одинаково. По этой причине во многих испытательных камерах, в которых для измерения влажности используется метод влажного и сухого термометра, датчик влажного и сухого термометра устанавливается на выпускном отверстии возвратного воздуха испытательной камеры. Кроме того, благодаря конструкции испытательной камеры и удобству обслуживания в использовании датчик влажного и сухого термометра, используемый для измерения и контроля относительной влажности, расположен на входе возвратного воздуха для легкой установки, а также помогает регулярно заменять влажный датчик. марлю колбы и очистите головку измерения температуры от сопротивления PT100, а также в соответствии с требованиями теста GJB150.9A на влажную жару 6.1.3. Скорость ветра, проходящего через датчик смоченного термометра, не должна быть ниже 4,6 м/с. Датчик смоченного термометра с небольшим вентилятором установлен на выходе возвратного воздуха для облегчения обслуживания и использования.   
    ЧИТАТЬ ДАЛЕЕ

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

связаться с нами