What is Environmental Testing?
The electronic devices and industrial products we rely on every day are affected by the environment in many ways, including temperature, humidity, pressure, light, electromagnetic waves and vibration. Environmental testing analyzes and evaluates the impact of these environmental factors on the product to determine its durability and reliability.
Guangdong Lab Companion LTD., has 10 million yuan registered capital and 3 R & D manufacturing plants in Dongguan, Kunshan and Chongqing. Lab Companion has been specialized in high and low temperature test equipment technology for 19 years, operating according to ISO9001, ISO14001, ISO 45001, ISO27001 four systems, setting sales and maintenance service centers in Shanghai, Wuhan, Chengdu, Chongqing, Xi 'an and Hong Kong. We work closely with International Organization of Leg al Metrology, Chinese Academy of Sciences, State Grid, China Southern Power Grid, Tsinghua University, Peking University, Hong Kong University of Science and Technology and other research institutions.
Main products of Lab Companion includes high and low temperature test chamber, constant temperature and humidity test chamber, rapid temperature cycling test chamber, thermal shock test chamber, high and low temperature and low pressure test chamber, vibration of the comprehensive chamber, industrial oven, vacuum oven, nitrogen oven, etc, providing high quality experimental equipment for universities, research institutes, medical health, inspection and quarantine, environmental monitoring, food and drugs, automobile manufacturing, petrochemical, rubber and plastic products, IC semiconductor, IT manufacturing and other fields.
Thermal Cycling Test(TC) & Thermal Shock Test(TS)
Thermal Cycling Test(TC):
In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.
A series of high and low temperature cycling tests are done on the temperature change at the temperature variation rate of 5~15 degrees per minute, which is not a real simulation of the actual situation. Its purpose is to apply stress to the test piece, accelerate the aging factor of the test piece, so that the test piece may cause damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.
Common ones are:
Electrical function of the product
The lubricant deteriorates and loses lubrication
Loss of mechanical strength, resulting in cracks and cracks
The deterioration of the material causes chemical action
Scope of application:
Module/system product environment simulation test
Module/System Product Strife test
PCB/PCBA/ Solder Joint Accelerated Stress Test (ALT/AST)...
Thermal Shock Test(TS):
In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.
High and low temperature shock tests under extremely harsh conditions on rapid temperature changes at a temperature variability of 40 degrees per minute are not truly simulated. Its purpose is to apply severe stress to the test piece to accelerate the aging factor of the test piece, so that the test piece may cause potential damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.
Common ones are:
Electrical function of the product
The product structure is damaged or the strength is reduced
Tin cracking of components
The deterioration of the material causes chemical action
Seal damage
Machine specifications:
Temperature range: -60 ° C to +150 ° C
Recovery time: < 5 minutes
Inside dimension: 370*350*330mm (D×W×H)
Scope of application:
PCB reliability acceleration test
Accelerated life test of vehicle electric module
LED parts accelerated test...
Effects of temperature changes on products:
The coating layer of components falls off, the potting materials and sealing compounds crack, even the sealing shell cracks, and the filling materials leak, which causes the electrical performance of components to decline.
Products composed of different materials, when the temperature changes, the product is not evenly heated, resulting in product deformation, sealing products cracking, glass or glassware and optics broken;
The large temperature difference makes the surface of the product condense or frost at low temperature, evaporates or melts at high temperature, and the result of such repeated action leads to and accelerates the corrosion of the product.
Environmental effects of temperature change:
Broken glass and optical equipment.
The movable part is stuck or loose.
Structure creates separation.
Electrical changes.
Electrical or mechanical failure due to rapid condensation or freezing.
Fracture in a granular or striated manner.
Different shrinkage or expansion characteristics of different materials.
The component is deformed or broken.
Cracks in surface coatings.
Air leak in the containment compartment.
Lab Companion – Испытательная камера для быстрого температурного циклаВведение Lab CompanionИмея более чем 20-летний опыт работы, Лабораторный компаньон является производителем климатических камер мирового класса и опытным поставщиком испытательных систем и оборудования «под ключ». Все наши камеры основаны на репутации Lab Companion, обеспечивающей долгий срок службы и исключительную надежность. В области проектирования, производства и обслуживания Lab Companion создала систему управления качеством, соответствующую международному стандарту системы качества ISO 9001:2008. Программа калибровки оборудования Lab Companion аккредитована в соответствии с международным стандартом ISO 17025 и американским национальным стандартом ANSI/NCSL-Z-540-1 от A2LA. A2LA является полноправным членом и подписантом Международного сотрудничества по аккредитации лабораторий (ILAC), Азиатско-Тихоокеанского региона по аккредитации лабораторий (APLAC) и Европейского сотрудничества по аккредитации (EA). Камеры для экологических испытаний Lab Companion серии SE предлагают значительно улучшенную систему воздушного потока, которая обеспечивает лучшие градиенты и улучшенную скорость изменения температуры продукта. В этих камерах используется флагманский программатор/контроллер Thermotron 8800, оснащенный 12,1-дюймовым плоским дисплеем с высоким разрешением и сенсорным пользовательским интерфейсом, расширенными возможностями построения графиков, регистрации данных, редактирования, доступа к экранной справке и долгосрочного хранения данных на жестком диске.Мы не только предлагаем продукцию высочайшего качества, но и обеспечиваем постоянную поддержку, призванную обеспечить вам бесперебойную работу еще долгое время после первоначальной продажи. Мы обеспечиваем местное обслуживание напрямую с завода с обширным запасом запчастей, которые могут вам понадобиться. ПроизводительностьДиапазон температур: от -70°C до +180°C.Производительность: при загрузке алюминия весом 23 кг (IEC60068-3-5) скорость подъема от +85°C до -40°C составляет 15℃/мин; скорость охлаждения от -40°C до +85°C также составляет 15℃/мин.Контроль температуры: ± 1°C. Температура по сухому термометру от контрольной точки после стабилизации на контрольном датчике.Производительность основана на условиях окружающей среды 75°F (23,9°C) и относительной влажности 50%.Характеристики охлаждения/нагрева основаны на измерениях на датчике управления в потоке приточного воздуха.КонструкцияИнтерьерНемагнитная нержавеющая сталь серии 300 с высоким содержанием никеля.Внутренние швы гелиарной сваркой для герметизации вкладыша.Углы и швы спроектированы так, чтобы обеспечить расширение и сжатие при экстремальных температурах.Слив конденсата расположен в полу облицовки и под камерой кондиционирования.Основание камеры полностью сварное.Неосадочная изоляция из стекловолокна «Ultra-Lite».Одна регулируемая внутренняя полка из нержавеющей стали входит в стандартную комплектацию.ЭкстерьерОбработанная листовая сталь, обработанная штамповкойМеталлические крышки доступа обеспечивают легкое открывание дверей к электрическим компонентам.Финишное покрытие лаком на водной основе, сухим на воздухе, распыляется на очищенную и загрунтованную поверхность.Легкосъемные распашные дверцы для обслуживания холодильной системы.Одно отверстие диаметром 12,5 см с внутренним сварным швом и съемной изолирующей заглушкой, установленное в аксессуарах правой боковой стены на распашной двери для облегчения доступа.ФункцииКамера Operation четко отображает полезную информацию во время выполненияGraphing Screen предлагает расширенные возможности, улучшенное программирование и отчетность.Статус системы отображает важные параметры холодильной системы.Программа Entry упрощает загрузку, просмотр и редактирование профилей.Мастера быстрой настройки облегчают вход в профильВсплывающие таблицы холодильного оборудования для удобной справкиTherm-Alarm® обеспечивает защиту от превышения и понижения температуры.Экран журнала активности отображает полную историю оборудованияВеб-сервер обеспечивает доступ к оборудованию через Интернет через Ethernet.Удобная всплывающая клавиатура позволяет быстро и легко вводить данные.Включает:- Четыре порта USB: два внешних и два внутренних.- Ethernet- РС-232Технические характеристики1-4 независимо программируемых каналаТочность измерения: типичная 0,25% от диапазона измерения.Выбираемая температурная шкала °C или °FЦветной плоский сенсорный дисплей с диагональю 12,1 дюйма (30 см)Разрешение: 0,1°C, 0,1% относительной влажности, 0,01 для других линейных применений.Часы реального времени в комплектеЧастота выборки: выборка переменной процесса осуществляется каждые 0,1 секунды.Диапазон пропорциональности: программируется от 1,0° до 300°.Метод управления: цифровойИнтервалы: НеограниченноРазрешение интервала: от 1 секунды до 99 часов, 59 минут с разрешением 1 секунда.- РС-232- 10+ лет хранения данных- Контроль температуры продукта- Плата реле событийРежимы работы: автоматический или ручной.Хранение программ: НеограниченноеПрограммные циклы:- До 64 петель на программуЦиклы могут повторяться до 9999 раз.- Допускается до 64 вложенных циклов в каждом
Условия проверки надежности умных часовВ современном обществе умные часы есть у учеников начальной школы и даже у детей детского сада. Итак, что такое умные часы? В поздний период продвижения спортивных часов из-за быстрого роста популярности смартфонов интеллектуальные столы не намерены обеспечивать тот же эффект PIM, что и КПК и смартфоны, и привлекают аксессуары для помощников агентов по смартфонам, аналогичные наушникам Bluetooth. голосовые помощники смартфонов, умные таблицы становятся информационными и информационными помощниками, обеспечивая более удобное и быстрое отображение и работу с информацией. Есть и другие названия, такие как Smart Accessory и Android Remote. Идея, позиционируемая как помощник по мобильному телефону, заключается в том, что «причина, по которой карманные часы вымерли, заключается в том, что нужно просто посмотреть время, но также вынуть карман, примерно на 2-3 секунды, но часы меньше 1 секунда, что удобнее, чем карманные часы». И после наблюдения, теперь все достают смартфон и раздвигают его, просто чтобы подтвердить сообщение, так что примерно десятки раз эти подтверждения даже набирать ответ не нужны, если десятки подтверждений менялись на часах, то не всегда приходится дергать задвижку машины, потому что это отнимает столько же времени, как карманные часы. Поэтому, став помощником мобильного телефона, пульт дистанционного управления, если вы не берете мобильный телефон на улицу, часы бесполезны, кроме того, что показывают время, а Bluetooth-гарнитура без мобильного телефона почти металлолом. .В сочетании с умным браслетом, чтобы лучше продавать!Смарт-часы от «меньших размеров, чем независимый компьютер от КПК» до «СПИДа с дистанционным управлением на смартфоне», кажется, были более успешным позиционированием, но на выставке CES 2014 можно увидеть, что в сочетании с позиционированием смарт-браслета лучше. Умный браслет использует датчики ускорения (а также гироскопы, магниторезистивные датчики и т. д.) для определения скорости бега пользователя, количества шагов и т. д. и может даже определять глубокий сон и предлагать рекомендации по упражнениям и сну. Когда браслет добавлен на дисплей, он может отображать время и информацию на мобильном телефоне. Обращение к информации мобильного телефона, если нет срочных информационных потребностей, фактически только аналог Bluetooth-гарнитуры рассматривается как вариант (курьер, водитель), если каждый может принять скорость доступа к информации, то рынок будет быть ограниченным. Однако, в дополнение к призыву к контролю за физическими упражнениями и записью сна, а также к подчеркиванию информационных советов, а не к акценту на дистанционном управлении часами на мобильном телефоне, это эквивалентно небольшой жертве или почти никакой жертве для конечного пользователя, но он приносит немедленную и новую ценность приложения (спорт, помощь во сне), а не полностью повторяет эффективность мобильного телефона, что еще больше увеличивает рыночный успех умных часов. После постоянной корректировки эффективности, применения и позиционирования, а также интеграции со смарт-кольцом мы считаем, что сможем иметь более высокий рынок, чем в прошлом. Умные часы для людей и функций:1. Умные часы для взрослыхФункции: синхронные звонки на мобильный телефон по Bluetooth, отправка и получение текстовых сообщений, мониторинг сна, мониторинг сердечного ритма, напоминание о сидячем положении, бег, удаленная фотография, воспроизведение музыки, видео, компас и другие функции, предназначенные для модных людей!2. Умные часы для пожилых людей.Функции: сверхточное GPS-позиционирование, семейные звонки, экстренные вызовы, мониторинг сердечного ритма, напоминания о сидячем положении, напоминания о лекарствах и другие настраиваемые функции для пожилых людей, обеспечивающие зонтик для путешествий пожилых людей, возьмите с собой эти часы, не теряйте пожилых людей!3. Дети позиционируют умные часыФункции: множественное позиционирование, двусторонний вызов, SOS SOS, удаленный мониторинг, интеллектуальная защита от потерь, исторический трек, электронный забор, шагомер, награда за любовь и другие функции, чтобы обеспечить безопасность детей, создать детям здоровую и безопасную среду для роста. ! Спецификация умных часов:МЭК 60086-3: Батарейки для часов.ISO 105-A02: Испытание на стойкость окраски -A02. Оценка обесцвечивания по серой шкале.ISO 105-A03-1993: Испытания на стойкость окраски -A03- Оценка окрашивания по серой шкале.ISO 764: Часовые антимагнитные часы.ISO 1413: Часы противоударные часовые.ISO 2281: Водонепроницаемые часы часовые.ISO 11641-1993: Кожа. Испытания на стойкость окраски. Устойчивость окраски к поту.ISO 14368-3: Испытание столового стекла на ударопрочность.MIL 810G: Вопросы экологической инженерии и лабораторные испытанияQB/T 1897-1993: Проверка водонепроницаемых часовQB/T 1898-1993: Проверка противоударных часов.QB/T 1908-1993: Ключевой тест надежностиQB/T 1919-2012: Типовая проверка цифровых кварцевых часов со стрелками и жидкими кристаллами.QB/T 2047-2007: Проверка металлических ремешков для часов.GB/T 2537-2001: испытание на стойкость окраски кожи при возвратно-поступательном шлифовании на стойкость окраски.QB/T 2540-2002: Проверка кожаного ремня.GB/T 6048-1985: цифровые кварцевые электронные часы.GB/T 18761-2007: электронный цифровой индикатор.GB/T 18828-2002: Стандарт часов для дайвинга.GB/T 22778-2008: Проверка типа цифрового кварцевого секундомера с ЖК-дисплеемGB/T 22780-2008: Типовая проверка кварцевых часов с ЖК-дисплеем.GB/T 26716-2011 idt ISO 764-2002: Проверка антимагнитных часов.HJ216-2005: часы Eco-Drive Пилотный проект умных часов:Надежность, точность измерения периода времени, мгновенная суточная разница, рабочая температура, диапазон напряжения, средний температурный коэффициент, коэффициент напряжения, влагостойкость, ударопрочность, водонепроницаемость, цикл замены батареи, усталостная устойчивость клавиш, устойчивость к свету и погодным условиям, антистатические характеристики Температура окружающей среды Диапазон: -25℃ ~ 55℃ Рабочая температура: -5 ~ 50℃/80% относительной влажности (Требования: каждая функция и жидкокристаллический дисплей должны быть полными и нормальными) Испытание при высокой и низкой рабочей температуре: 50±1℃/24 часа → RT /1 час → -5±1℃ Условия испытания на изменение температуры: (IEC60068-2) Высокая температура: 30, 40, 55℃ Низкая температура: 5, -5, -10, -25℃ Nb Время пребывания (включая время подъема и охлаждения) ) : 10 минут, 30 минут, 1 час. Колебания температуры: 3±0,6℃/мин, 5±1℃/мин. Испытание на влажную жару:1,40±1℃/85 ~ 95% относительной влажности/24 часа2,8±1℃/85 ~ 95% относительной влажности/4 часа Испытание влажности складского хранения:40℃/20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%49℃/10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%Каждый шаг37 часов Испытание на моделирование изменения температуры на воздушном транспорте:Спецификация: IEC60721.2 Условия окружающей среды для применения электрических и электронных изделий – национальный транспортный стандарт.Категория: 2К5 (Применимо к климатическому диапазону невентилируемого и негерметичного внутреннего транспорта по всему миру)Диапазон температур: -65℃ ←→85℃РАМПА: 5 ℃/мин Тест моделирования изменения температуры на воздушном транспорте:Спецификация: IEC60721.6 Условия окружающей среды для применения электрических и электронных изделий – морское судоходство.Категория: 6К5 (с учетом холодов, установка в защищенных от атмосферных воздействий, но не отапливаемых частях)Диапазон температур: -25℃ ←→40℃РАМПА: 3℃/мин. Испытание на устойчивость к изменению температуры воды:5 минут в воде 40 ℃ → 5 минут в воде 20 ℃, 5 минут в воде 40 ℃, глубина воды 10 см Испытание на устойчивость к давлению воды:Замочите часы в емкости с водой, создайте избыточное давление 2*10^5Па [или глубина воды 20 м] в течение 1 минуты, поддерживайте 10 минут, а затем через 1 минуту давление достигнет стандартного давления окружающей среды. Тест на устойчивость к соленой воде:Поместите испытуемые часы в раствор хлорида натрия концентрацией 30 г/л при температуре 18–25 °C на 24 часа. Проверка корпуса и аксессуаров после теста не должна иметь существенных изменений; Проверьте движущиеся части, особенно вращающееся переднее кольцо, должно сохранять нормальную работу. Испытание подводной надежности:Тестируемые часы погружаются в воду на глубину 30 см ± 2 см и помещаются при температуре 18 ° C ~ 25 ° C на 50 часов, при этом все механические устройства должны работать нормально. Во время испытания механические устройства, которые необходимо эксплуатировать в воде, такие как устройства предварительной настройки времени и выключатели света, должны работать нормально; Проведите тест на конденсацию, на внутренней поверхности стекла стола не должно появиться конденсационного тумана, а механическая функция не должна быть повреждена. Испытание на устойчивость к термическому удару:Погрузите часы в воду разной температуры на глубину 30см±2см последовательно: поместите их в воду температурой 40°С±2°С на 10 минут; Поместите в воду температурой 5℃±2℃ на 10 минут; Поместить в воду температурой 40°С ± 2°С на 10 минут (часы нельзя вынимать из воды и повторно погружать в воду другой температуры более чем на 1 минуту). Выполните тест на конденсацию: на внутренней поверхности стекла стола не должен образовываться конденсат, и он должен работать нормально. Испытание на химическую стойкость:Характеристики цитирования: ASTM F 1598-95, ASTM D 1308-87, ASTM D 1308-02.Ингредиенты: Бытовая химия (грязь, пыль, масло, пары и арахисовое масло, косметика, крем для рук... и т. д.)Время: 24 часа Коррозионная стойкость к испытанию на искусственный пот:QB/T 1901.2-2006 «Покрытия корпуса из золотого сплава и его аксессуары. Часть 2. Испытание на чистоту, толщину, коррозионную стойкость и адгезию»Принцип испытания: Искусственный пот используется для контакта с объектом при высокой температуре (40±2) ℃, и через длительное время (не менее 24 часов) исследуется состояние его поверхности для определения его устойчивости к коррозии от пота. Тест на вибрацию:Ускорение (19,6 м/с^2), частота 30–120 Гц, цикл сканирования 1 мин.Требования: функции и ЖК-дисплей должны быть полными и нормальными, детали не должны болтаться и отваливаться. Тест на падение:Падение с высоты 1 м из твердой древесины с литографической печатью, один раз со стороны часов, один раз из поверхностного стеклаТребования: Нормальная работа после каждого удара, внешний вид не поврежден [разбито стекло, погнута ножка корпуса, погнуты компоненты корпуса, сломан корпус, повреждена кнопка] Испытание на удар:Материал ударного конуса: политетрафторэтилен, скорость удара 4,43 м/с, высота удара 1 м. Тест на качание руки:от 2 до 10 Гц
Испытание на естественную конвекцию (без испытания на температуру циркуляции ветра) и технические характеристикиДомашнее развлекательное аудиовизуальное оборудование и автомобильная электроника являются одними из ключевых продуктов многих производителей, и продукт в процессе разработки должен моделировать адаптируемость продукта к температуре и электронным характеристикам при различных температурах. Однако, когда для имитации температурной среды используется обычная печь или испытательная камера с постоянной температурой и влажностью, и печь, и испытательная камера с постоянной температурой и влажностью имеют испытательную зону, оборудованную циркуляционным вентилятором, поэтому в помещении могут возникнуть проблемы со скоростью ветра. тестовая площадка. Во время испытания однородность температуры поддерживается вращением циркуляционного вентилятора. Хотя однородность температуры в испытательной зоне может быть достигнута за счет циркуляции ветра, тепло испытуемого продукта также будет отводиться циркулирующим воздухом, что будет существенно не соответствовать реальному продукту в условиях безветренной эксплуатации. (например, в гостиной, в помещении). Из-за циркуляции ветра разница температур испытываемого продукта составит около 10 ° C, чтобы имитировать фактическое использование условий окружающей среды, многие люди неправильно поймут, что только испытательная машина может производить температуру (например, : печь, испытательная камера с постоянной температурой и влажностью) может проводить испытания на естественную конвекцию, на самом деле это не так. В спецификации указаны особые требования к скорости ветра, а также требуется тестовая среда без скорости ветра. С помощью испытательного оборудования с естественной конвекцией (без испытания на принудительную циркуляцию ветра) создается температурная среда без вентилятора (испытание с естественной конвекцией), а затем проводится интеграционное испытание для определения температуры испытуемого продукта. Это решение может применяться для реальных испытаний на температуру окружающей среды бытовых электронных изделий или ограниченных пространств (таких как: большой ЖК-телевизор, кабина автомобиля, автомобильная электроника, ноутбук, настольный компьютер, игровая консоль, стереосистема и т. д.).Разница в испытательной среде с циркуляцией ветра или без нее для испытания испытываемого продукта:Если испытуемый продукт не находится под напряжением, испытуемый продукт не будет нагреваться сам, его источник тепла только поглощает тепло воздуха в испытательной печи, а если испытуемый продукт находится под напряжением и нагревается, циркуляция ветра в испытательная печь отберет тепло у испытуемого продукта. С каждым метром увеличения скорости ветра его тепло будет уменьшаться примерно на 10%. Предположим, что для моделирования температурных характеристик электронных изделий в помещении без кондиционирования воздуха используется духовка или испытательная камера с постоянной температурой и влажностью для имитации 35 °C, хотя температуру окружающей среды в зоне испытаний можно контролировать в пределах 35 °C. Благодаря электрическому нагреву и замораживанию циркуляция ветра в печи и испытательная камера с постоянной температурой и влажностью отводят тепло от испытуемого продукта, в результате чего фактическая температура испытуемого продукта ниже, чем температура в реальном состоянии. без ветра. Поэтому необходимо использовать испытательную машину с естественной конвекцией без скорости ветра, чтобы эффективно имитировать реальную безветренную среду (например, закрытую кабину автомобиля без запуска, корпус прибора, водонепроницаемую коробку на открытом воздухе... Такая среда).Внутренняя среда без циркуляции ветра и солнечного лучистого теплового излучения:С помощью тестера естественной конвекции смоделируйте фактическое использование клиентом реальной конвекционной среды кондиционирования воздуха, анализ горячих точек и характеристики рассеивания тепла при оценке продукта, например, ЖК-телевизор на фотографии, чтобы не только учитывать собственное рассеивание тепла, но и Для оценки воздействия теплового излучения за окном тепловое излучение продукта может производить дополнительное лучистое тепло выше 35°C.Сравнительная таблица скорости ветра и испытуемого продукта IC:Когда скорость окружающего ветра выше, температура поверхности IC также отнимает тепло поверхности IC из-за ветрового цикла, что приводит к более высокой скорости ветра и более низкой температуре. Когда скорость ветра равна 0, температура равна 100 ℃, но когда скорость ветра достигает 5 м/с, температура поверхности IC ниже 80 ℃.Испытание на нефорсированную циркуляцию воздуха:В соответствии со спецификациями IEC60068-2-2, в процессе испытаний при высоких температурах необходимо выполнять условия испытаний без принудительной циркуляции воздуха, процесс испытаний необходимо поддерживать в условиях безветренной циркуляции, а также Высокотемпературное испытание проводится в испытательной печи, поэтому испытание не может проводиться в испытательной камере или печи с постоянной температурой и влажностью, а тестер с естественной конвекцией можно использовать для имитации условий свободного воздуха.Описание условий испытаний:Спецификация испытаний на непринудительную циркуляцию воздуха: МЭК-68-2-2, ГБ2423.2, ГБ2423.2-89 3.3.1Испытание на нефорсированную циркуляцию воздуха: Условия испытания ненасильственной циркуляции воздуха могут хорошо имитировать условия свободного воздуха.ГБ2423.2-89 3.1.1:При измерении в условиях открытого воздуха, когда температура испытуемого образца стабильна, температура самой горячей точки на поверхности более чем на 5 ℃ выше, чем температура окружающего большого устройства, это испытательный образец по рассеиванию тепла, в противном случае это испытательный образец без тепловыделения.GB2423.2-8 10 (Испытание на градиент температуры образца для испытания на рассеивание тепла):Предусмотрена стандартная процедура испытаний для определения способности термоэлектронных изделий (включая компоненты, оборудование и другие изделия) адаптироваться к использованию при высоких температурах.Требования к тесту:а. Испытательная машина без принудительной циркуляции воздуха (оснащена вентилятором или воздуходувкой)б. Одиночный тестовый образецв. Скорость нагрева не превышает 1 ℃/мин.д. После того, как температура испытательного образца достигает стабильности, на испытательный образец подается питание или выполняется домашняя электрическая нагрузка для определения электрических характеристик.Особенности испытательной камеры с естественной конвекцией:1. Можно оценить тепловую мощность испытываемого продукта после включения питания, чтобы обеспечить наилучшую равномерность распределения;2. В сочетании с цифровым сборщиком данных эффективно измеряет соответствующую информацию о температуре продукта, подлежащего тестированию, для синхронного многодорожечного анализа;3. Запись информации о более чем 20 рельсах (синхронная запись распределения температуры внутри испытательной печи, многодорожечная температура испытуемого продукта, средняя температура... и т. д.).4. Контроллер может напрямую отображать многодорожечное значение температуры и кривую записи; Многодорожечные тестовые кривые можно сохранять на USB-накопителе через контроллер;5. Программное обеспечение для анализа кривой может интуитивно отображать многодорожечную температурную кривую и выводить отчеты EXCEL, а контроллер имеет три вида отображения [сложный английский];6. Выбор датчика температуры термопары нескольких типов (B, E, J, K, N, R, S, T);7. Масштабируемость для увеличения скорости нагрева и планирования стабильности управления.
Скрининг температурно-циклического стресса (2)Введение параметров напряжения для скрининга температурного циклического стресса:Параметры стресса при скрининге температурного циклического стресса в основном включают в себя следующее: диапазон экстремальных значений высоких и низких температур, время выдержки, изменчивость температуры, номер цикла.Экстремальный диапазон высоких и низких температур: чем больше диапазон экстремальных высоких и низких температур, тем меньше циклов требуется, тем ниже стоимость, но продукт не может превысить предел, не вызывает новых неисправностей, разница между верхний и нижний пределы изменения температуры - не менее 88°С, типовой диапазон изменения - от -54°С до 55°С.Время выдержки: Кроме того, время выдержки не должно быть слишком коротким, в противном случае будет слишком поздно заставить испытуемый продукт производить изменения теплового расширения и сжатия, что касается времени выдержки, время выдержки разных продуктов различно, вы можно обратиться к соответствующим требованиям спецификации.Количество циклов: Что касается количества циклов циклического температурного скрининга, оно также определяется с учетом характеристик продукта, сложности, верхнего и нижнего пределов температуры и скорости скрининга. Число скринингов не должно превышаться, в противном случае это приведет к ненужный вред продукту и не может повысить уровень проверки. Количество температурных циклов колеблется от 1 до 10 циклов [обычное скрининг, первичное скрининг] до 20-60 циклов [прецизионное скрининг, вторичное скрининг], для устранения наиболее вероятных дефектов изготовления можно эффективно устранить от 6 до 10 циклов. Помимо эффективности температурного цикла, в основном зависит от изменения температуры поверхности продукта, а не от изменения температуры внутри испытательного бокса.Существует семь основных параметров, влияющих на температурный цикл:(1) Температурный диапазон(2) Количество циклов(3) Температурный режим Чанга(4) Время задержки(5) Скорости воздушного потока(6) Равномерность напряжения(7) Функциональная проверка или нет (рабочие условия продукта)Классификация стресс-скрининга усталости:Общую классификацию исследований усталости можно разделить на многоцикловую усталость, малоцикловую усталость и рост усталостных трещин. Что касается малоцикловой усталости, ее можно разделить на термическую усталость и изотермическую усталость.Сокращения стресс-скрининга:ESS: Скрининг экологического стрессаFBT: тестер функциональных платICA: анализатор цепейИКТ: Тестер цепейLBS: тестер короткого замыкания нагрузочной платыMTBF: среднее время наработки на отказВремя температурных циклов:a.MIL-STD-2164(GJB 1302-90): В тесте на устранение дефектов количество температурных циклов составляет 10, 12 раз, а при безаварийном обнаружении - 10 ~ 20 раз или 12 ~ 24 раза. Для устранения наиболее вероятных дефектов изготовления необходимо около 6 ~ 10 циклов для их эффективного устранения. 1–10 циклов [общий скрининг, первичный скрининг], 20–60 циклов [точный скрининг, вторичный скрининг].B.od-hdbk-344 (GJB/DZ34) Оборудование для первоначального скрининга и уровень устройства используют от 10 до 20 петель (обычно ≥10), на уровне компонентов используется от 20 до 40 петель (обычно ≥25).Колебания температуры:a.MIL-STD-2164 (GJB1032) четко гласит: [Скорость изменения температуры температурного цикла 5 ℃/мин]B.od-hdbk-344 (GJB/DZ34) Уровень компонента 15 °C/мин, система 5 °C/минв. При скрининге температурного циклического стресса, как правило, не указывается изменчивость температуры, и обычно используемая скорость изменения степени обычно составляет 5 ° C/мин.
IEC-60068-2 Комбинированное испытание на конденсацию, температуру и влажностьРазница в спецификациях испытаний на влажную теплоту IEC60068-2В спецификации IEC60068-2 предусмотрено пять видов испытаний на влажную жару, в дополнение к обычным испытаниям при 85 ℃/85 % относительной влажности, 40 ℃/93 % относительной влажности. В дополнение к высокой температуре и высокой влажности с фиксированной точкой, существуют еще два специальных теста [IEC60068-2-30, IEC60068-2-38], эти два представляют собой чередующийся цикл влажности и влажности, а также комбинированный цикл температуры и влажности, поэтому тест процесс будет изменять температуру и влажность и даже несколько групп программных связей и циклов, применяемых в полупроводниках, деталях, оборудовании и т. д. ИС. Чтобы смоделировать явление конденсации на открытом воздухе, оцените способность материала предотвращать диффузию воды и газа и ускорять процесс производства продукта. устойчивость к износу, пять спецификаций были организованы в сравнительную таблицу различий в спецификациях испытаний на влажную и жаркую погоду, а точки испытаний были подробно объяснены для испытания в комбинированном цикле с влажной и тепловой обработкой, а также условия испытаний и точки GJB в были дополнены испытания на влажность и жару.IEC60068-2-30 испытание на переменный влажный тепловой циклВ этом испытании используется методика испытания, при которой поочередно поддерживается влажность и температура, чтобы влага проникла в образец и вызвала конденсацию (конденсацию) на поверхности испытываемого продукта, чтобы подтвердить адаптируемость компонента, оборудования или других продуктов в использование, транспортировка и хранение в условиях повышенной влажности и циклических изменений температуры и влажности. Эта спецификация также подходит для больших тестовых образцов. Если оборудование и процесс тестирования должны поддерживать компоненты мощного нагрева для этого теста, эффект будет лучше, чем IEC60068-2-38, высокая температура, используемая в этом тесте, имеет два (40 ° C, 55 ° C), 40 ° C соответствует большинству высокотемпературных сред мира, а 55 ° C соответствует всем высокотемпературным средам мира. Условия испытаний также делятся на [цикл 1, цикл 2], по степени серьезности [цикл 1] выше, чем [Цикл 2].Подходит для побочных продуктов: компонентов, оборудования, различных типов продуктов, подлежащих тестированию.Испытательная среда: сочетание высокой влажности и циклических изменений температуры приводит к образованию конденсата, и можно протестировать три типа условий [использование, хранение, транспортировка ([упаковка не является обязательной)]Испытательный стресс: дыхание вызывает проникновение водяного параДоступно ли питание: ДаНе подходит для: слишком легких и маленьких деталей.Процесс испытаний, а также осмотр и наблюдение после испытаний: проверьте электрические изменения после попадания влаги [не проводить промежуточную проверку]Условия испытаний: Влажность: 95% относительной влажности. [Изменение температуры после поддержания высокой влажности] (низкая температура 25 ± 3 ℃ ← → высокая температура 40 ℃ или 55 ℃).Скорость подъема и охлаждения: нагрев (0,14 ℃/мин), охлаждение (0,08 ~ 0,16 ℃/мин)Цикл 1: Если важными характеристиками являются абсорбция и респираторный эффект, испытуемый образец является более сложным [влажность не менее 90% относительной влажности].Цикл 2: В случае менее очевидных эффектов абсорбции и респираторного воздействия испытуемый образец является более простым [влажность не менее 80% относительной влажности].Сравнительная таблица различий в спецификациях испытаний на влажную жару IEC60068-2Для изделий составного типа используется комбинированный метод испытаний для ускорения подтверждения устойчивости испытуемого образца к деградации в условиях высокой температуры, высокой влажности и низких температур. Этот метод испытаний отличается от дефектов продукции, вызванных дыханием [роса, поглощение влаги] согласно IEC60068-2-30. Жесткость этого испытания выше, чем у других испытаний с влажным тепловым циклом, поскольку во время испытания происходит больше изменений температуры и [дыхания], диапазон температур цикла шире [от 55 ℃ до 65 ℃], а скорость изменения температуры Температурный цикл происходит быстрее [повышение температуры: 0,14 °C/мин становится 0,38 °C/мин, 0,08 °C/мин становится 1,16 °C/мин], кроме того, в отличие от обычного влажного теплового цикла, низкотемпературный цикл Условия -10°C добавляются для увеличения частоты дыхания и замерзания воды, конденсирующейся в зазоре заменителя, что является характеристикой данной спецификации испытаний. Процесс тестирования позволяет проводить испытания мощности и испытания мощности приложенной нагрузки, но он не может повлиять на условия испытаний (колебания температуры и влажности, скорость подъема и охлаждения) из-за нагрева побочного продукта после включения питания. Из-за изменения температуры и влажности во время процесса испытания на верхней части испытательной камеры не может быть капель конденсирующейся воды, попадающих на побочный продукт.Подходит для побочных продуктов: компонентов, уплотнений металлических компонентов, уплотнений выводных концов.Условия испытаний: сочетание высокой температуры, высокой влажности и низких температур.Испытательный стресс: ускоренное дыхание + замороженная вода.Можно ли включить питание: можно ли включать и внешнюю электрическую нагрузку (не может влиять на условия испытательной камеры из-за мощного нагрева)Неприменимо: Не может заменить влажное тепло и попеременное влажное тепло. Этот тест используется для выявления дефектов, отличных от дыхания.Процесс испытаний, а также осмотр и наблюдение после испытаний: проверьте электрические изменения после воздействия влаги [проверьте в условиях высокой влажности и выньте после испытания]Условия испытаний: цикл влажного тепла (25, пожалуйста, 65 + 2 ℃ / 93 +/- 3% относительной влажности), пожалуйста, низкотемпературный цикл (25, пожалуйста, 65 + 2 ℃ / 93 + 3% относительной влажности - - 10 + 2 ℃) X5cycle = 10 циклСкорость подъема и охлаждения: нагрев (0,38 ℃/мин), охлаждение (1,16 ℃/мин)Цикл тепла и влажности (25 ←→65±2℃/93±3% относительной влажности)Низкотемпературный цикл (25 ←→65±2℃/93±3% относительной влажности →-10±2℃)GJB150-09 испытание на влажную жаруИнструкции: Испытание GJB150-09 на влагу и тепло предназначено для подтверждения способности оборудования выдерживать воздействие горячей и влажной атмосферы, подходит для оборудования, хранящегося и используемого в жарких и влажных средах, оборудования, подверженного высокой влажности, или оборудования, которое может есть потенциальные проблемы, связанные с жарой и влажностью. Жаркие и влажные места могут встречаться в течение всего года в тропиках, сезонно в средних широтах, а также в оборудовании, подвергающемся комбинированным изменениям давления, температуры и влажности, с особым упором на 60 ° C / 95% относительной влажности. Такая высокая температура и влажность не встречаются в природе и не имитируют эффект сырости и тепла после солнечного излучения, но могут найти части оборудования с потенциальными проблемами, но не могут воспроизвести сложную температуру и влажность окружающей среды, оценить долгосрочный эффект и не может воспроизвести воздействие влажности, связанное с окружающей средой с низкой влажностью.Соответствующее оборудование для испытаний комбинированного цикла конденсации, влажного замораживания, влажного тепла: испытательная камера с постоянной температурой и влажностью.
Цель испытания на температурный шок
Испытание на надежность в условиях окружающей среды. В дополнение к высокой температуре, низкой температуре, высокой температуре и высокой влажности, комбинированному циклу температуры и влажности, температурный шок (холодный и горячий шок) также является распространенным испытательным проектом, испытание на температурный шок (испытание на термический удар, испытание на температурный шок). , именуемый: TST), цель испытания на температурный удар состоит в том, чтобы выявить конструктивные и технологические дефекты продукта посредством серьезных изменений температуры, которые превышают естественную окружающую среду [изменение температуры более 20 ℃/мин и даже выше до 30 ~ 40 ℃/мин], но часто возникает ситуация, когда температурный цикл путают с температурным шоком. «Температурный цикл» означает, что в процессе изменения высокой и низкой температуры задается и контролируется скорость изменения температуры; Скорость изменения температуры «температурного шока» (горячий и холодный шок) не указана (время нарастания), в основном требуется время восстановления, в соответствии со спецификацией IEC, существует три вида методов испытаний на температурный цикл [Na, Nb, NC] . Термический удар является одним из трех пунктов испытания [Na] [быстрое изменение температуры с указанным временем преобразования; среда: воздух], основными параметрами температурного шока (термического шока) являются: условия высокой и низкой температуры, время пребывания, время возврата, количество циклов, в условиях высоких и низких температур и время пребывания будут основываться на текущей новой спецификации. от температуры поверхности испытуемого продукта, а не от температуры воздуха в зоне испытания испытательного оборудования.
Камера для испытаний на термический удар:
Он используется для мгновенного тестирования структуры материала или композитного материала в непрерывной среде с чрезвычайно высокой и чрезвычайно низкой температурой, степени допуска, чтобы проверить химические изменения или физические повреждения, вызванные тепловым расширением и сжатием в в кратчайшие сроки применимые объекты включают металл, пластик, резину, электронику.... Такие материалы могут использоваться в качестве основы или эталона для улучшения своей продукции.
Процесс испытаний на холодный и тепловой удар (температурный шок) позволяет выявить следующие дефекты продукции:
Разный коэффициент расширения, вызванный зачисткой шва.
Вода поступает после растрескивания с разным коэффициентом расширения.
Ускоренное испытание на коррозию и короткое замыкание, вызванное проникновением воды
Согласно международному стандарту IEC, обычными изменениями температуры являются следующие условия:
1. Когда оборудование переносится из теплого помещения в холодное помещение на открытом воздухе или наоборот.
2. Когда оборудование внезапно охлаждается дождем или холодной водой.
3. Установлено во внешнем бортовом оборудовании (например: автомобиль, 5G, система наружного мониторинга, солнечная энергия)
4. При определенных условиях транспортировки [автомобиль, корабль, воздух] и хранения [склад без кондиционера]
Температурное воздействие можно разделить на два типа двухкоробного и трехкоробного воздействия:
Инструкции: Температурное воздействие является обычным [высокая температура → низкая температура, низкая температура → высокая температура], этот способ также называется [воздействие двумя коробками], еще одно так называемое [воздействие тремя коробками], процесс [высокая температура → нормальная температура → низкая температура, низкая температура → нормальная температура → высокая температура], вставляется между высокой температурой и низкой температурой, чтобы избежать добавления буфера между двумя экстремальными температурами. Если вы посмотрите на спецификации и условия испытаний, то обычно это нормальный температурный режим, высокая и низкая температура будут чрезвычайно высокими и очень низкими, в военных спецификациях и правилах транспортных средств вы увидите, что существует нормальный температурный режим.
Условия испытаний на температурный удар IEC:
Высокая температура: 30, 40, 55, 70, 85, 100, 125, 155 ℃.
Низкая температура: 5, -5, -10, -25, -40, -55, -65℃.
Время пребывания: 10 минут, 30 минут, 1 час, 2 часа, 3 часа (если не указано, 3 часа)
Описание времени воздействия температурного шока:
Время выдержки температурного шока в дополнение к требованиям спецификации, некоторые из них будут зависеть от веса испытуемого продукта и температуры поверхности испытуемого продукта.
Характеристики времени пребывания при термическом ударе в зависимости от веса:
GJB360A-96-107, MIL-202F-107, EIAJ ED4701/100, JASO-D001... Подождем.
Время воздействия теплового удара основано на спецификациях контроля температуры поверхности: MIL-STD-883K, MIL-STD-202H (воздух над объектом испытаний).
Требования MIL883K-2016 для спецификации [температурный шок]:
1. После достижения температуры воздуха заданного значения на поверхность испытуемого изделия необходимо поступить в течение 16 минут (время пребывания не менее 10 минут).
2. Воздействие высоких и низких температур превышает установленное значение, но не более 10 ℃.
Последующие действия после испытания на температурный шок IEC
Причина: метод температурных испытаний МЭК лучше всего рассматривать как часть серии испытаний, поскольку некоторые отказы могут не проявляться сразу после завершения метода испытаний.
Последующие тестовые задания:
IEC60068-2-17 Испытание на герметичность
IEC60068-2-6 Синусоидальная вибрация
IEC60068-2-78 Постоянное влажное тепло
IEC60068-2-30 Горячий и влажный температурный цикл
Условия температурных испытаний на ударную обработку оловянных усов (усов) отделка:
1. - 55 (+ 0/-) 10 ℃, пожалуйста - 85 (+/- 0) 10 ℃, 20 мин/1 цикл (проверьте еще раз 500 циклов)
1000 циклов, 1500 циклов, 2000 циклов, 3000 циклов
2. 85(±5)℃ ←→-40(+5/-15)℃, 20мин/1цикл, 500циклов
3.-35±5℃ ←→125±5℃, выдержка 7 минут, 500±4 цикла.
4. - 55 (+ 0 / -) 10 ℃, пожалуйста - 80 (+/- 0) 10 ℃, 7 минут пребывания, 20 минут / 1 цикл, 1000 циклов
Характеристики машины для испытания на термический удар:
Частота размораживания: размораживание каждые 600 циклов [условия испытаний: +150 ℃ ~ -55 ℃]
Функция регулировки нагрузки: система может автоматически регулироваться в соответствии с нагрузкой тестируемого продукта без ручной настройки.
Высокая весовая нагрузка: прежде чем оборудование покинет завод, используйте алюминиевый IC (7,5 кг) для моделирования нагрузки, чтобы убедиться, что оборудование может удовлетворить спрос.
Расположение датчика температурного удара: выпускное отверстие для воздуха и выходное отверстие для возвратного воздуха в зоне испытания можно выбрать или установить оба, что соответствует спецификациям испытаний MIL-STD. Помимо соответствия требованиям спецификации, он также ближе к воздействию испытуемого продукта во время испытания, что снижает неопределенность испытания и однородность распределения.
Испытание пластины VMR на кратковременный температурный цикл
Испытание температурным циклом является одним из наиболее часто используемых методов проверки надежности и срока службы бессвинцовых сварочных материалов и деталей SMD. Он оценивает клеевые детали и паяные соединения на поверхности SMD и вызывает пластическую деформацию и механическую усталость материалов паяных соединений под усталостным эффектом холодного и горячего температурного цикла с контролируемой изменчивостью температуры, чтобы понять потенциальные опасности и факторы отказа. паяных соединений и SMD. Схема шлейфового подключения подключается между деталями и паяными соединениями. В процессе испытаний выявляются включения-выключения и включения-выключения между линиями, деталями и паяными соединениями с помощью высокоскоростной системы измерения мгновенного разрыва, которая отвечает требованиям проверки надежности электрических соединений для оценки наличия паяных соединений, оловянных шариков. и детали выходят из строя. Этот тест на самом деле не симулируется. Его цель — создать сильную нагрузку и ускорить процесс старения испытуемого объекта, чтобы подтвердить, правильно ли спроектирован или изготовлен продукт, а затем оценить срок службы паяных соединений компонентов при термической усталости. Испытание надежности электрического высокоскоростного мгновенного разрыва соединения стало ключевым звеном, обеспечивающим нормальную работу электронной системы и предотвращающим выход из строя электрического соединения, вызванный отказом незрелой системы. Изменение сопротивления за короткий период времени наблюдалось при ускоренном изменении температуры и вибрационных испытаниях.
Цель:
1. Убедитесь, что спроектированная, изготовленная и собранная продукция соответствует заранее установленным требованиям.
2. Ослабление напряжения ползучести паяного соединения и разрушение SMD, вызванное разницей теплового расширения.
3. Максимальная испытательная температура температурного цикла должна быть на 25 ℃ ниже, чем температура Tg материала печатной платы, чтобы избежать более одного механизма повреждения заменяющего испытательного продукта.
4. Изменение температуры со скоростью 20 ℃/мин представляет собой температурный цикл, а изменение температуры выше 20 ℃/мин является температурным шоком.
5. Интервал динамических измерений сварного соединения не превышает 1 мин.
6. Время пребывания при высокой и низкой температуре для определения неисправности необходимо измерить за 5 ходов.
Требования:
1. Общее время пребывания при температуре испытуемого продукта находится в пределах номинальной максимальной температуры и минимальной температуры, а продолжительность времени пребывания очень важна для ускоренного испытания, поскольку времени пребывания недостаточно во время ускоренного испытания. , что сделает процесс ползучести незавершенным
2. Местная температура должна быть выше температуры Tmax и ниже температуры Tmin.
См. список технических характеристик:
IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, ДЖЕСД22-Б117, СДЖР-01
Инвертор — тест надежности
Инвертор - тест на надежность, также известный как преобразователь напряжения, его функция заключается в преобразовании низкого напряжения постоянного тока в высокое напряжение переменного тока, некоторое электронное оборудование должно работать от сети переменного тока, но мы предоставляем питание постоянного тока, в это время вы должны использовать инвертор, прямой ток в переменный ток для управления электронными компонентами. Инвертор-тест на надежность, также известный как преобразователь напряжения, его функция заключается в преобразовании низкого напряжения постоянного тока в высокое напряжение переменного тока, некоторое электронное оборудование должно работать от сети переменного тока, но мы предоставляем питание постоянного тока, в это время вы должны использовать инвертор, прямой ток в переменный ток для управления электронными компонентами.
Соответствующие условия испытаний:
Элемент
температура
время
другой
Первоначальное испытание при нормальной температуре
25 ℃
ВРЕМЯ≥2 часов
-
Начальное испытание при низкой температуре
0 ℃ или -5 °C
ВРЕМЯ≥2 часов
-
Начальное испытание при высокой температуре
60℃
ВРЕМЯ≥2 часов
-
Испытание на высокую температуру и высокую влажность
40℃/95% относительной влажности
240 часов
-
Испытание на хранение при высокой температуре
70℃
ВРЕМЯ≥96 часов или 240 часов
-
Испытание на хранение при низкой температуре -1
-20°С
ВРЕМЯ≥96 часов
-
Испытание на хранение при низкой температуре -2
-40℃
240 часов
-
Испытание на хранение при высокой температуре и высокой влажности.
40℃/90% относительной влажности
ВРЕМЯ≥96 часов
-
Тест температурного цикла
-20℃~ 70℃
5 цикл
Комнатная температура ↓-20 ℃ (4 часа)↓ Комнатная температура (90% относительной влажности. 4 часа)↓70°C (4 часа)↓ Комнатная температура (4 часа)
Испытание на высокотемпературную нагрузку
55 ℃
эквивалентная нагрузка, 1000 часов
-
Жизненный тест
40°С
Наработка на отказ≥40000 часов
-
тест включения/выключения (выключение питания)
-
-
1 мин: вкл., 1 мин: выкл., 5000 циклов при эквивалентной нагрузке
Тест на вибрацию
-
-
Ускорение 3q, частота 10–55 Гц, X, Y, Z в трех направлениях по 10 минут в каждом, всего 30 минут.
Испытание на удар
-
-
Ускорение 80g, 10 мс каждый раз, три раза в направлениях X, Y, Z.
Примечание 1. Перед тестированием тестируемый модуль следует поместить при нормальной температуре (15–35 °C, относительная влажность 45–65%) на один час.
Применимое оборудование:
1. Камера для испытаний при высоких и низких температурах.
2. Испытательная камера с высокой температурой и высокой влажностью.
3. Испытательная камера с быстрым температурным циклом.
Применение камеры температурного цикла TCT в индустрии оптической связиПоявление 5G заставляет людей почувствовать быстрое развитие мобильного Интернета, а также технологии оптической связи как важную основу. В настоящее время в Китае построена самая длинная в мире волоконно-оптическая сеть, и благодаря постоянному развитию технологии 5G технология оптической связи будет использоваться более широко. Развитие технологий оптической связи не только позволяет людям наслаждаться более высокой скоростью сети, но также открывает больше возможностей и проблем. Например, новые приложения, такие как облачные игры, VR и AR, требуют более стабильных и высокоскоростных сетей, и технология оптической связи может удовлетворить эти потребности. В то же время технология оптической связи также открыла больше инновационных возможностей, таких как интеллектуальная медицинская помощь, интеллектуальное производство и другие области, которые будут использовать технологию оптической связи для достижения более эффективной и точной работы. Но знаешь что? Эта удивительная технология не может быть реализована без использования оборудования для макроэкологических испытаний, особенно испытательной камеры температурного цикла TC, которая представляет собой испытательную камеру с быстрым изменением температуры. Эта статья знакомит вас с менеджером по качеству испытаний на надежность изделий оптической связи – лабораторией быстрого изменения температуры.Сначала давайте кратко поговорим об оптической связи. Некоторые люди также говорят, что это называется оптической связью, поэтому их двое, в конце концов, не является концепцией. По сути, это два одного и того же понятия. Оптическая связь — это использование оптических сигналов для коммуникационных технологий, а оптическая связь основана на оптической связи через оптические устройства, такие как оптические волокна и оптические кабели, для передачи данных. Широко используются технологии оптической связи, такие как ежедневное использование оптоволоконной широкополосной связи, оптические датчики мобильных телефонов, оптические измерения в аэрокосмической отрасли и так далее. Можно сказать, что оптическая связь стала важной частью современной области связи. Так почему же оптическая связь так популярна? Фактически, он имеет множество преимуществ, таких как высокоскоростная передача, большая полоса пропускания, низкие потери и так далее.Обычные продукты оптической связи включают в себя: оптический кабель, оптоволоконный коммутатор, оптоволоконный модем и т. д., используемые для передачи и приема оптических сигналов оборудования волоконно-оптической связи; Датчик температуры, датчик деформации, датчик смещения и т. д. могут измерять различные физические величины в режиме реального времени, а также другие оптоволоконные датчики; Оптический усилитель, легированный эрбием, оптический усилитель, легированный иттербием, рамановский усилитель и т. д., используемый для расширения интенсивности оптических сигналов и других оптических усилителей; Гелий-неоновый лазер, диодный лазер, волоконный лазер и т. д. являются источниками света в оптической связи, используемыми для получения высокояркого, направленного и когерентного лазерного света и других лазеров; Фотоприемники, оптические ограничители, фотодиоды и др. для приема оптических сигналов и преобразования их в электрические сигналы и другие оптические приемники; Оптические переключатели, оптические модуляторы, программируемые оптические матрицы и т. д. используются для управления и настройки передачи и маршрутизации оптических сигналов и других оптических контроллеров. Давайте возьмем в качестве примера мобильные телефоны и поговорим о применении продуктов оптической связи на мобильных телефонах:1. Оптическое волокно. Оптическое волокно обычно используется как часть линии связи. Из-за его высокой скорости передачи сигналы связи не подвержены влиянию внешних помех и других характеристик, оно стало важной частью мобильной телефонной связи.2. Фотоэлектрический преобразователь/оптический модуль: фотоэлектрический преобразователь и оптический модуль — это устройства, которые преобразуют оптические сигналы в электрические сигналы, а также являются очень важной частью мобильной телефонной связи. В эпоху высокоскоростной связи, такой как 4G и 5G, скорость и производительность такого оборудования необходимо постоянно улучшать, чтобы удовлетворить потребности в быстрой и стабильной связи.3. Модуль камеры. В мобильном телефоне модуль камеры обычно включает в себя ПЗС-матрицу, CMOS, оптический объектив и другие детали, а его качество и производительность также оказывают значительное влияние на качество оптической связи мобильного телефона.4. Дисплей. В дисплеях мобильных телефонов обычно используются OLED, AMOLED и другие технологии. Принцип этих технологий связан с оптикой, но также является важной частью оптической связи мобильных телефонов.5. Датчик освещенности: Датчик освещенности в основном используется в мобильных телефонах для измерения освещенности окружающей среды, определения приближения и распознавания жестов, а также является важным продуктом оптической связи для мобильных телефонов.Можно сказать, что продукты оптической связи заполняют все аспекты нашей жизни и работы. Однако условия производства и использования продуктов оптической связи часто изменчивы, например, погодные условия с высокими или низкими температурами при работе на открытом воздухе, или длительное использование также может столкнуться с изменениями теплового расширения и сжатия. Так как же достигается надежное использование этих продуктов? Здесь следует упомянуть нашего сегодняшнего главного героя — испытательную камеру с быстрым изменением температуры, также известную как TC-бокс в индустрии оптической связи. Чтобы гарантировать, что продукты оптической связи по-прежнему работают нормально в различных условиях окружающей среды, необходимо провести тесты на быстрое изменение температуры продуктов оптической связи. Испытательная камера с быстрым изменением температуры может моделировать различные условия температуры и влажности, а также мгновенно моделировать экстремальные изменения окружающей среды в реальном мире в быстром диапазоне. Так как же испытательная камера с быстрым изменением температуры применяется в индустрии оптической связи?1. Испытание производительности оптического модуля. Оптический модуль является ключевым компонентом оптической связи, таким как оптический приемопередатчик, оптический усилитель, оптический переключатель и т. д. Испытательная камера с быстрым изменением температуры может моделировать различные температурные условия и проверять производительность оптического модуля при различных температурах, чтобы оценить его адаптируемость и надежность.2. Проверка надежности оптических устройств: оптические устройства включают оптические волокна, оптические датчики, решетки, фотонные кристаллы, фотодиоды и т. д. Испытательная камера с быстрым изменением температуры может проверять изменение температуры этих оптических устройств и оценивать их надежность и срок службы на основе результаты испытаний.3. Имитация системы оптической связи. Испытательная камера с быстрым изменением температуры может имитировать различные условия окружающей среды в системе оптической связи, такие как температура, влажность, вибрация и т. д., для проверки производительности, надежности и стабильности всей системы.4. Технологические исследования и разработки. Индустрия оптической связи — это наукоемкая отрасль, которая нуждается в постоянной разработке новых технологий и новых продуктов. Испытательную камеру с быстрым изменением температуры можно использовать для проверки производительности и надежности новых продуктов, что помогает ускорить разработку и выход на рынок новых продуктов.Подводя итог, можно видеть, что в индустрии оптической связи испытательная камера с быстрым изменением температуры обычно используется для проверки производительности и надежности оптических модулей и оптических устройств. Затем, когда мы используем для испытаний испытательную камеру с быстрым изменением температуры, для разных продуктов оптической связи могут потребоваться разные стандарты. Ниже приведены стандарты испытаний на быстрое изменение температуры для некоторых распространенных продуктов оптической связи:1. Оптическое волокно: общие стандарты испытаний. Существуют следующие общие стандарты испытаний оптического волокна на быстрое изменение температуры: IEC 61300-2-22: стандарт определяет метод испытаний на стабильность и долговечность компонентов оптического волокна, в разделе 4.3 которого указаны термические метод испытания стабильности компонентов оптического волокна в случае быстрого изменения температуры компонентов оптического волокна для измерения и оценки. GR-326-CORE: Этот стандарт определяет требования к испытаниям на надежность оптоволоконных разъемов и адаптеров, включая испытания на термостойкость для оценки надежности оптоволоконных разъемов и адаптеров в условиях изменения температуры. GR-468-CORE: Этот стандарт определяет технические характеристики и методы испытаний оптоволоконных разъемов, включая испытания на температурный цикл, испытания на ускоренное старение и т. д. для проверки надежности и стабильности оптоволоконных разъемов в различных условиях окружающей среды. ASTM F2181: Этот стандарт определяет метод испытания волокна на разрушение в условиях высокой температуры и высокой влажности для оценки долговечности волокна. Вышеуказанные стандарты, такие как GB/T 2423.22-2012, тестируются и оцениваются на предмет надежности оптического волокна при быстрых изменениях температуры или длительных условиях высокой температуры и высокой влажности, что может помочь большинству производителей обеспечить качество и надежность. изделий из оптоволокна.2. Фотоэлектрический преобразователь/оптический модуль. Обычными стандартами испытаний на быстрое изменение температуры являются GB/T 2423.22-2012, GR-468-CORE, EIA/TIA-455-14 и IEEE 802.3. Эти стандарты в основном охватывают методы испытаний и конкретные этапы реализации фотоэлектрических преобразователей/оптических модулей, которые могут обеспечить производительность и надежность продукции в различных температурных средах. Среди них стандарт GR-468-CORE специально предназначен для требований к надежности оптических преобразователей и оптических модулей, включая испытания температурного цикла, испытания на влажную жару и другие испытания на воздействие окружающей среды, требующие от оптических преобразователей и оптических модулей поддержания стабильной и надежной работы в течение длительного времени. -срок использования.3. Оптический датчик. Обычными стандартами испытаний на быстрое изменение температуры являются GB/T 27726-2011, IEC 61300-2-43 и IEC 61300-2-6. Эти стандарты в основном охватывают методы испытаний и конкретные этапы проведения испытаний оптического датчика на изменение температуры, которые могут обеспечить производительность и надежность продукта в различных температурных средах. Среди них стандарт GB/T 27726-2011 является стандартом метода испытаний оптических датчиков в Китае, включая метод испытаний волоконно-оптических датчиков на воздействие окружающей среды, который требует, чтобы оптический датчик поддерживал стабильную работу в различных рабочих условиях. . Стандарт IEC 60749-15 является международным стандартом для испытаний электронных компонентов на температурный цикл, а также имеет эталонное значение для испытаний оптических датчиков на быстрое изменение температуры.4. Лазер: Общими стандартами испытаний на быстрое изменение температуры являются GB/T 2423.22-2012 «Экологические испытания электрических и электронных изделий, часть 2: Испытание Nb: испытание температурным циклом», GB/T 2423.38-2002 «Основные методы испытаний электрических компонентов, часть 38». : Испытание на термостойкость (IEC 60068-2-2), GB/T 13979-2009 «Метод испытания характеристик лазерного изделия», IEC 60825-1, IEC/TR 61282-10 и другие стандарты в основном охватывают метод испытания на изменение температуры лазера и конкретные этапы реализации. Он может обеспечить производительность и надежность продукции в различных температурных условиях. Среди них стандарт GB/T 13979-2009 является стандартом для метода испытаний лазерных продуктов в Китае, включая метод испытаний на воздействие окружающей среды. Стандарт IEC 60825-1 представляет собой спецификацию целостности лазерных изделий, а также существуют соответствующие положения для испытаний лазеров на быстрое изменение температуры. Кроме того, стандарт IEC/TR 61282-10 является одним из руководящих принципов проектирования волоконно-оптических систем связи, который включает методы защиты лазеров от окружающей среды.5. Оптический контроллер. Обычными стандартами испытаний на быстрое изменение температуры являются GR-1209-CORE и GR-1221-CORE. GR-1209-CORE — это стандарт надежности оптоволоконного оборудования, в основном предназначенный для проверки надежности оптических соединений и определяющий эксперименты по надежности систем оптических соединений. Среди них быстрый температурный цикл (FTC) — один из тестовых проектов, целью которого является проверка надежности волоконно-оптических модулей в быстро меняющихся температурных условиях. Во время испытания оптический контроллер должен выполнить циклическое изменение температуры в диапазоне от -40 ° C до 85 ° C. Во время температурного цикла модуль должен поддерживать нормальную работу и не выдавать аномальный выходной сигнал, а время испытания составляет 100 температурных циклов. . GR-1221-CORE — это стандарт надежности для пассивных оптоволоконных устройств, который подходит для тестирования пассивных устройств. Среди них испытание температурного цикла является одним из пунктов испытаний, который также требует испытания оптического контроллера в диапазоне от -40 ° C до 85 ° C, а время испытания составляет 100 циклов. Оба этих стандарта определяют испытание надежности оптического контроллера в условиях изменения температуры, которое может определить стабильность и надежность оптического контроллера в суровых условиях окружающей среды.В целом, разные стандарты испытаний на быстрое изменение температуры могут фокусироваться на разных параметрах испытаний и методах испытаний, поэтому рекомендуется выбирать соответствующие стандарты испытаний в соответствии с использованием конкретных продуктов.В последнее время, когда мы обсуждаем проверку надежности оптических модулей, наблюдается противоречивый показатель: количество температурных циклов проверки оптических модулей бывает и в 10 раз, и в 20 раз, и в 100 раз, и даже в 500 раз.Определения частоты в двух отраслевых стандартах:Ссылки на эти стандарты имеют четкие источники и являются правильными.По нашему мнению, для переднего оптического модуля 5G количество циклов составляет 500, а температура установлена на уровне -40 °C ~ 85 °C.Ниже приводится описание 10/20/100/500, приведенное выше в оригинальном тексте GR-468 (2004 г.).Из-за ограниченного пространства в этой статье рассказывается об использовании испытательной камеры с быстрым изменением температуры в индустрии оптической связи. Если у вас есть какие-либо вопросы при использовании испытательной камеры с быстрым изменением температуры и другого оборудования для испытаний на воздействие окружающей среды, добро пожаловать, чтобы обсудить с нами и учиться вместе.
Сравнение климатических испытаний и экологических испытанийИспытание на климатическую среду - испытательная камера с постоянной температурой и влажностью, испытательная камера с высокой и низкой температурой, испытательная камера с холодным и горячим ударом, испытательная камера с влажным и переменным нагревом, испытательная камера с быстрым изменением температуры, испытательная камера с линейным изменением температуры, постоянная температура при входе камера для испытаний на влажность и т. д. Все они предусматривают контроль температуры.Поскольку на выбор имеется несколько точек контроля температуры, метод контроля температуры в климатической камере также имеет три решения: контроль температуры на входе, контроль температуры продукта и «каскадный» контроль температуры. Первые два — это одноточечный контроль температуры, а третий — двухпараметрический контроль температуры.Метод одноточечного контроля температуры очень развит и широко используется.Большинство ранних методов управления представляли собой переключательное управление «пинг-понг», широко известное как нагрев, когда холодно, и охлаждение, когда жарко. Этот режим управления является режимом управления с обратной связью. Когда температура циркулирующего воздушного потока превышает заданную температуру, электромагнитный клапан охлаждения открывается, чтобы подать холодный объем в циркулирующий воздушный поток и снизить температуру воздушного потока. В противном случае выключатель нагревательного устройства включается для непосредственного нагрева циркулирующего воздушного потока. Поднимите температуру воздушного потока. Этот режим управления требует, чтобы холодильное устройство и нагревательные компоненты испытательной камеры всегда находились в режиме ожидания, что не только тратит много энергии, но и контролируемый параметр (температура) всегда находится в состоянии «колебания», и точность управления невысокая.Теперь одноточечный метод контроля температуры в основном заменяется на универсальный метод пропорционально-дифференциально-интегрального (ПИД) управления, который может обеспечить коррекцию контролируемой температуры в соответствии с прошлым изменением контролируемого параметра (интегральное управление) и тенденцией изменения (дифференциальное управление). ), что не только экономит энергию, но и амплитуда «колебаний» мала, а точность управления высока.Двухпараметрический контроль температуры предназначен для одновременного сбора значения температуры воздухозаборника испытательной камеры и значения температуры рядом с продуктом. Воздухозаборник испытательной камеры расположен очень близко к месту установки испарителя и нагревателя в помещении модуляции воздуха, и его величина напрямую отражает результат модуляции воздуха. Использование этого значения температуры в качестве параметра управления с обратной связью имеет то преимущество, что позволяет быстро модулировать параметры состояния циркулирующего воздуха.Значение температуры рядом с продуктом указывает на реальные температурные условия окружающей среды, которым подвергается продукт, что является требованием спецификации испытаний на воздействие окружающей среды. Использование этого значения температуры в качестве параметра управления с обратной связью может обеспечить эффективность и достоверность температурного испытания на окружающую среду, поэтому этот подход учитывает преимущества обоих и требования фактического испытания. Стратегия двухпараметрического контроля температуры может представлять собой независимое «управление с разделением времени» двух групп температурных данных, или два взвешенных значения температуры могут быть объединены в одно значение температуры в качестве сигнала управления с обратной связью в соответствии с определенным весовым коэффициентом. а значение весового коэффициента связано с размером испытательной камеры, скоростью ветра циркулирующего воздушного потока, величиной скорости изменения температуры, тепловой мощностью работы продукта и другими параметрами.Поскольку теплообмен представляет собой сложный динамический физический процесс и на него сильно влияют условия атмосферной среды вокруг испытательной камеры, рабочее состояние самого испытуемого образца и сложность конструкции, сложно создать идеальную математическую модель для него. контроль температуры и влажности испытательной камеры. Чтобы повысить стабильность и точность управления, в управление некоторыми камерами температурных испытаний внедрены теория и метод управления нечеткой логикой. В процессе управления моделируется образ мышления человека, а прогнозирующее управление применяется для более быстрого управления космическим полем температуры и влажности.По сравнению с температурой выбор точек измерения и контроля влажности относительно прост. Во время циркуляции хорошо регулируемого влажного воздуха в испытательную камеру с высоко- и низкотемпературным циклом обмен молекулами воды между влажным воздухом, испытуемым образцом и четырьмя стенками испытательной камеры очень мал. Пока температура циркулирующего воздуха стабильна, поток циркулирующего воздуха от входа в испытательную камеру до выхода из испытательной камеры находится в процессе. Влажность влажного воздуха меняется очень мало. Таким образом, значение относительной влажности обнаруженного воздуха в любой точке поля потока циркулирующего воздуха в испытательной камере, например, на входе, в среднем потоке поля потока или на выходе возвратного воздуха, в основном одинаково. По этой причине во многих испытательных камерах, в которых для измерения влажности используется метод влажного и сухого термометра, датчик влажного и сухого термометра устанавливается на выпускном отверстии возвратного воздуха испытательной камеры. Кроме того, благодаря конструкции испытательной камеры и удобству обслуживания в использовании датчик влажного и сухого термометра, используемый для измерения и контроля относительной влажности, расположен на входе возвратного воздуха для легкой установки, а также помогает регулярно заменять влажный датчик. марлю колбы и очистите головку измерения температуры от сопротивления PT100, а также в соответствии с требованиями теста GJB150.9A на влажную жару 6.1.3. Скорость ветра, проходящего через датчик смоченного термометра, не должна быть ниже 4,6 м/с. Датчик смоченного термометра с небольшим вентилятором установлен на выходе возвратного воздуха для облегчения обслуживания и использования.
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.