баннер
Дом

Камера для испытаний на высокие и низкие температуры

Камера для испытаний на высокие и низкие температуры

  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    ЧИТАТЬ ДАЛЕЕ
  • Temperature Cyclic Stress Screening (2) Temperature Cyclic Stress Screening (2)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (2) Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition) Stress screening fatigue classification: The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue. Stress screening acronyms: ESS: Environmental stress screening FBT: Function board tester ICA: Circuit analyzer ICT: Circuit tester LBS: load board short-circuit tester MTBF: mean time between failures Time of temperature cycles: a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening]. B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25). Temperature variability: a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min] B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
    ЧИТАТЬ ДАЛЕЕ
  • EC-35EXT, Superior constant temperature bath (306L) EC-35EXT, Superior constant temperature bath (306L)
    Nov 14, 2014
    EC-35EXT, Superior constant temperature bath (306L) Project Type Series EXT Function Temperature occurs in a way Dry wet bulb method Temperature range -70 ~ +150 ℃ Range of temperature Below the + 100℃ ±0.3 ℃ Above the + 101℃ ±0.5 ℃ Temperature distribution Below the + 100℃ ±0. 7 ℃ Above the + 101℃ ±1.0 ℃ The temperature drops the time +125 ~-55 ℃ Within 18 points (10℃ / point average temperature change) Temperature rise time -55 ~+125 ℃ Within 18 minutes (10℃ / minute) The internal volume of the uterus was tested 306L Test room inch method (width, depth and height) 630mm × 540mm × 900mm Product inch method (width, depth and height) 1100mm × 1960mm × 1900mm Make the material External outfit Test room control panel machine room Cold interductile steel plate is dark gray Inside Stainless steel plate (SUS304,2B polished) Broken heat material Test room Hard synthetic resin door Hard synthetic resin foam cotton, glass cotton Project Type Series EXT Cooling dehumidifying device Cooling-down method Mechanical section shrinkage and freezing mode and binary freezing mode Cooling medium;coolant Single segment side R 404A Binary high temperature / low temperature side R 404A / R23 Cooling and dehumidifier Multi-channel mixed heat sink type The condenser (water-cooled) Calorifier Form Nickel-chromium heat-resistant alloy heater Blower Form Stir fan Controller The temperature is set -72.0 ~ + 152.0 ℃ Time setting Fanny 0 ~ 999 Time 59 minutes (formula) 0 ~ 20000 Time 59 minutes (formula formula) Set decomposition energy Temperature was 0.1℃ for 1 min Indicate accuracy Temperature ± 0.8℃ (typ.), time ± 100 PPM Vacation type Value or program Stage number 20-stage / 1 program The number of procedures The maximum number of incoming force (RAM) programs is 32 programs The maximum number of internal ROM programs is 13 programs式 Round-trip number Max. 98, or unlimited Number of round-trip repeats Maximum 3 times Displace the end Pt 100Ω ( at 0 ℃ ),grade ( JIS C 1604-1997 ) Control action When splitting the PID action Endovirus function Early delivery function, standby function, setting value maintenance function, power outage protection function, Power action selection function, maintenance function, transportation round-trip function, Time delivery function, time signal output function, overrising and overcooling prevention function, Abnormal representation function, external alarm output function, setting paradigm representation function, Transport type selection function, the calculation time represents the function, the slot lamp lamp function Project Type Series EXH Control panel Equipment machine LCD operating panel (type contact panel), Represents lamp (power, transport, abnormal), test power supply terminal, external alarm terminal, Time signal output terminal, power cord connector  Protective device Refrigerating cycle Overload protection device, high blocking device Calorifier Temperature over-rise protection device, temperature fuse Blower Overload protection device Control panel Leakage breaker for power supply, fuse (heater,), Fuse (for operating loop), temperature rise protection device (for testing), Temperature rise overcooling prevention device (test material, in microcomputer) Pay belongs to the product Test material shed shed by * 8 Stainless steel Shshed (2), shed (4) Fuse Operating loop Protection Fuses (2) Operating specification ( 1 )  Else Bolus (Cable hole: 1) Equipment products Adventitia Heat-resistant glass: 270mm: 190mm 1   Cable hole Inner diameter of 50mm 1   The trough inside the lamp AC100V 15W White hot ball 1   Wheel   6   Horizontal adjustment   6   Electrovirus characteristics Power supply is * 5.1  AC Three-phase  380V  50Hz Maximum load current 60A Capacity of the leakage breaker for the power supply 80A Sensory current  30mA Power distribution thickness 60mm2 Rubber insulation hose Coarseness of grounding wire 14mm2 Cooling water at * 5.3 Water yield 5000 L /h (When the cooling water inlet temperature is 32℃) water pressure 0.1 ~ 0.5MPa Side pipe diameter of the device PT1 1/4  Tubing Drain-pipe  * 5.4 PT1/2 Product weight 700kg
    ЧИТАТЬ ДАЛЕЕ
  • AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification
    Oct 12, 2024
    AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification With the progress of automotive electronic technology, there are many complicated data management control systems in today's cars, and through many independent circuits, to transmit the required signals between each module, the system inside the car is like the "master-slave architecture" of the computer network, in the main control unit and each peripheral module, automotive electronic parts are divided into three categories. Including IC, discrete semiconductor, passive components three categories, in order to ensure that these automotive electronic components meet the highest standards of automotive anquan, the American Automotive Electronics Association (AEC, The Automotive Electronics Council is a set of standards [AEC-Q100] designed for active parts [microcontrollers and integrated circuits...] and [[AEC-Q200] designed for passive components, which specifies the product quality and reliability that must be achieved for passive parts. Aec-q100 is the vehicle reliability test standard formulated by the AEC organization, which is an important entry for 3C and IC manufacturers into the international auto factory module, and also an important technology to improve the reliability quality of Taiwan IC. In addition, the international auto factory has passed the anquan standard (ISO-26262). AEC-Q100 is the basic requirement to pass this standard. List of automotive electronic parts required to pass AECQ-100: Automotive disposable memory, Power Supply step-down regulator, Automotive photocoupler, three-axis accelerometer sensor, video jiema device, rectifier, ambient light sensor, non-volatile ferroelectric memory, power management IC, embedded flash memory, DC/DC regulator, Vehicle gauge network communication device, LCD driver IC, Single power Supply differential Amplifier, Capacitive proximity switch Off, high brightness LED driver, asynchronous switcher, 600V IC, GPS IC, ADAS Advanced Driver Assistance System Chip, GNSS Receiver, GNSS front-end amplifier... Let's wait. AEC-Q100 Categories and Tests: Description: AEC-Q100 specification 7 major categories a total of 41 tests Group A- ACCELERATED ENVIRONMENT STRESS TESTS consists of 6 tests: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSL Group B- ACCELERATED LIFETIME SIMULATION TESTS consists of three tests: HTOL, ELFR, and EDR PACKAGE ASSEMBLY INTEGRITY TESTS consists of 6 tests: WBS, WBP, SD, PD, SBS, LI Group D- DIE FABRICATION RELIABILITY Test consists of 5 TESTS: EM, TDDB, HCI, NBTI, SM The group ELECTRICAL VERIFICATION TESTS consist of 11 tests, including TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC and SER Cluster F-Defect SCREENING TESTS: 11 tests, including: PAT, SBA The CAVITY PACKAGE INTEGRITY TESTS consist of 8 tests, including: MS, VFV, CA, GFL, DROP, LT, DS, IWV Short description of test items: AC: Pressure cooker CA: constant acceleration CDM: electrostatic discharge charged device mode CHAR: indicates the feature description DROP: The package falls DS: chip shear test ED: Electrical distribution EDR: non-failure-prone storage durability, data retention, working life ELFR: Early life failure rate EM: electromigration EMC: Electromagnetic compatibility FG: fault level GFL: Coarse/fine air leakage test GL: Gate leakage caused by thermoelectric effect HBM: indicates the human mode of electrostatic discharge HTSL: High temperature storage life HTOL: High temperature working life HCL: hot carrier injection effect IWV: Internal hygroscopic test LI: Pin integrity LT: Cover plate torque test LU: Latching effect MM: indicates the mechanical mode of electrostatic discharge MS: Mechanical shock NBTI: rich bias temperature instability PAT: Process average test PC: Preprocessing PD: physical size PTC: power temperature cycle SBA: Statistical yield analysis SBS: tin ball shearing SC: Short circuit feature SD: weldability SER: Soft error rate SM: Stress migration TC: temperature cycle TDDB: Time through dielectric breakdown TEST: Function parameters before and after stress test TH: damp and heat without bias THB, HAST: Temperature, humidity or high accelerated stress tests with applied bias UHST: High acceleration stress test without bias VFV: random vibration WBS: welding wire cutting WBP: welding wire tension Temperature and humidity test conditions finishing: THB(temperature and humidity with applied bias, according to JESD22 A101) : 85℃/85%R.H./1000h/bias HAST(High Accelerated stress test according to JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/bias AC pressure cooker, according to JEDS22-A102:121 ℃/100%R.H./96h UHST High acceleration stress test without bias, according to JEDS22-A118, equipment: HAST-S) : 110℃/85%R.H./264h TH no bias damp heat, according to JEDS22-A101, equipment: THS) : 85℃/85%R.H./1000h TC(temperature cycle, according to JEDS22-A104, equipment: TSK, TC) : Level 0: -50℃←→150℃/2000cycles Level 1: -50℃←→150℃/1000cycles Level 2: -50℃←→150℃/500cycles Level 3: -50℃←→125℃/500cycles Level 4: -10℃←→105℃/500cycles PTC(power temperature cycle, according to JEDS22-A105, equipment: TSK) : Level 0: -40℃←→150℃/1000cycles Level 1: -65℃←→125℃/1000cycles Level 2 to 4: -65℃←→105℃/500cycles HTSL(High temperature storage life, JEDS22-A103, device: OVEN) : Plastic package parts: Grade 0:150 ℃/2000h Grade 1:150 ℃/1000h Grade 2 to 4:125 ℃/1000h or 150℃/5000h Ceramic package parts: 200℃/72h HTOL(High temperature working life, JEDS22-A108, equipment: OVEN) : Grade 0:150 ℃/1000h Class 1:150℃/408h or 125℃/1000h Grade 2:125℃/408h or 105℃/1000h Grade 3:105℃/408h or 85℃/1000h Class 4:90℃/408h or 70℃/1000h   ELFR(Early Life failure Rate, AEC-Q100-008) : Devices that pass this stress test can be used for other stress tests, general data can be used, and tests before and after ELFR are performed under mild and high temperature conditions.
    ЧИТАТЬ ДАЛЕЕ
  • Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температуры Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температуры
    Oct 12, 2024
    Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температурыОборудование для испытаний на воздействие окружающей среды включает в себя испытательную камеру с постоянной температурой и влажностью, камеру для испытаний на горячий и холодный удар, камеру для испытаний на температурный цикл, безветренную печь... Все это испытательное оборудование находится в смоделированной среде температуры и воздействия влажности на продукт, чтобы выяснить В процессе проектирования, производства, хранения, транспортировки и использования могут возникнуть дефекты продукции, ранее только моделировалась температура воздуха в испытательной зоне, но в новых международных стандартах и новых условиях испытаний на международном заводе начинаются требования, основанные на температуре воздуха. нет. Это температура поверхности испытуемого продукта. Кроме того, температуру поверхности также следует измерять и фиксировать синхронно во время процесса испытаний для последующего анализа. Соответствующее оборудование для испытаний на воздействие окружающей среды должно сочетаться с контролем температуры поверхности, а применение измерения температуры поверхности обобщается следующим образом. Применение определения температуры испытательной камеры с постоянной температурой и влажностью: Описание: Испытательная камера с постоянной температурой и влажностью в процессе испытаний в сочетании с многоканальным обнаружением температуры, высокой температурой и влажностью, конденсацией (конденсатом), комбинированной температурой и влажностью, медленным температурным циклом... Во время процесса испытания датчик прикрепленный к поверхности тестируемого продукта, который можно использовать для измерения температуры поверхности или внутренней температуры тестируемого продукта. С помощью этого многодорожечного модуля определения температуры заданные условия, фактическая температура и влажность, температура поверхности тестируемого продукта, а также те же измерения и записи могут быть интегрированы в файл синхронной кривой для последующего хранения и анализа.Применение контроля и обнаружения температуры поверхности камеры для испытаний на термический удар: [время выдержки на основе контроля температуры поверхности], [запись измерения температуры поверхности в процессе температурного удара] Описание: 8-канальный датчик температуры крепится к поверхности тестируемого продукта и применяется в процессе температурного шока. Время пребывания можно отсчитывать в обратном направлении по достижению температуры поверхности. Во время процесса удара условия настройки, температура испытания, температура поверхности испытуемого продукта, а также те же измерения и записи могут быть интегрированы в синхронную кривую.Приложение для контроля и обнаружения температуры поверхности испытательной камеры с температурным циклом: [Изменчивость температуры температурного цикла и время выдержки контролируются в зависимости от температуры поверхности тестируемого продукта] Описание: Испытание на температурный цикл отличается от испытания на температурный шок. Испытание на температурный шок использует максимальную энергию системы для изменения температуры между высокими и низкими температурами, а скорость изменения температуры достигает 30 ~ 40 ℃ / мин. Испытание температурного цикла требует процесса изменения высоких и низких температур, и его изменчивость температуры можно устанавливать и контролировать. Однако новые спецификации и условия испытаний международных производителей начали требовать, чтобы изменчивость температуры относилась к температуре поверхности тестируемого продукта, а не к температуре воздуха, а также к контролю изменчивости температуры в соответствии со спецификациями текущего температурного цикла. Согласно характеристикам поверхности испытательного продукта [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... Кроме того, время пребывания при высоких и низких температурах также может быть основано на испытательной поверхности, а не температуры воздуха.Применения контроля и обнаружения температуры поверхности испытательной камеры для циклического стресс-скрининга: Инструкции: Машина для испытания на стресс-скрининг с температурным циклом в сочетании с многорельсовым измерением температуры. При изменении температуры стресс-скрининга вы можете использовать [температуру воздуха] или [температуру поверхности испытуемого продукта] для контроля изменчивости температуры, кроме того, В резидентном процессе с высокой и низкой температурой обратную величину времени также можно контролировать в зависимости от поверхности испытуемого продукта. В соответствии с соответствующими спецификациями (GJB1032, IEST) и требованиями международных организаций, в соответствии с определением GJB1032 в точке измерения времени воздействия и температуры при стресс-скрининге, 1. Количество термопар, закрепленных на изделии, должно быть не менее 3, а точка измерения температуры системы охлаждения должна быть не менее 6, 2. Убедитесь, что температура 2/3 термопар на изделии установлена на уровне ± 10 ℃, кроме того, в соответствии с требованиями IEST (Международного Ассоциация по экологическим наукам и технологиям) время пребывания должно достигать времени стабилизации температуры плюс 5 минут или времени испытания производительности. Приложение для определения температуры поверхности без воздушной печи (испытательная камера с естественной конвекцией): Описание: Благодаря сочетанию безветренной печи (испытательная камера с естественной конвекцией) и многоканального модуля определения температуры создается температурная среда без вентилятора (естественная конвекция) и интегрирован соответствующий тест определения температуры. Это решение может применяться для реальных испытаний электронных продуктов при температуре окружающей среды (таких как: облачный сервер, 5G, салон электромобиля, помещение без кондиционирования воздуха, солнечный инвертор, большой ЖК-телевизор, домашний интернет-распределитель, офис 3C, ноутбук, настольный компьютер). , игровая консоль....... и т. д.).  
    ЧИТАТЬ ДАЛЕЕ
  • Инвертор — тест надежности Инвертор — тест надежности
    Oct 11, 2024
    Инвертор — тест надежностиИнвертор - тест на надежность, также известный как преобразователь напряжения, его функция заключается в преобразовании низкого напряжения постоянного тока в высокое напряжение переменного тока, некоторое электронное оборудование должно работать от сети переменного тока, но мы предоставляем питание постоянного тока, в это время вы должны использовать инвертор, прямой ток в переменный ток для управления электронными компонентами. Инвертор-тест на надежность, также известный как преобразователь напряжения, его функция заключается в преобразовании низкого напряжения постоянного тока в высокое напряжение переменного тока, некоторое электронное оборудование должно работать от сети переменного тока, но мы предоставляем питание постоянного тока, в это время вы должны использовать инвертор, прямой ток в переменный ток для управления электронными компонентами.Соответствующие условия испытаний:ЭлементтемпературавремядругойПервоначальное испытание при нормальной температуре25 ℃ВРЕМЯ≥2 часов-Начальное испытание при низкой температуре0 ℃ или -5 °CВРЕМЯ≥2 часов-Начальное испытание при высокой температуре60℃ВРЕМЯ≥2 часов-Испытание на высокую температуру и высокую влажность40℃/95% относительной влажности240 часов-Испытание на хранение при высокой температуре70℃ВРЕМЯ≥96 часов или 240 часов-Испытание на хранение при низкой температуре -1-20°СВРЕМЯ≥96 часов-Испытание на хранение при низкой температуре -2-40℃240 часов-Испытание на хранение при высокой температуре и высокой влажности.40℃/90% относительной влажностиВРЕМЯ≥96 часов-Тест температурного цикла-20℃~ 70℃5 циклКомнатная температура ↓-20 ℃ (4 часа)↓ Комнатная температура (90% относительной влажности. 4 часа)↓70°C (4 часа)↓ Комнатная температура (4 часа)Испытание на высокотемпературную нагрузку55 ℃эквивалентная нагрузка, 1000 часов-Жизненный тест40°СНаработка на отказ≥40000 часов-тест включения/выключения (выключение питания)--1 мин: вкл., 1 мин: выкл., 5000 циклов при эквивалентной нагрузкеТест на вибрацию--Ускорение 3q, частота 10–55 Гц, X, Y, Z в трех направлениях по 10 минут в каждом, всего 30 минут.Испытание на удар--Ускорение 80g, 10 мс каждый раз, три раза в направлениях X, Y, Z.Примечание 1. Перед тестированием тестируемый модуль следует поместить при нормальной температуре (15–35 °C, относительная влажность 45–65%) на один час.Применимое оборудование:1. Камера для испытаний при высоких и низких температурах.2. Испытательная камера с высокой температурой и высокой влажностью.3. Испытательная камера с быстрым температурным циклом.        
    ЧИТАТЬ ДАЛЕЕ
  • Стандарт испытаний IEC 61646 для тонкопленочных солнечных фотоэлектрических модулей Стандарт испытаний IEC 61646 для тонкопленочных солнечных фотоэлектрических модулей
    Oct 07, 2024
    Стандарт испытаний IEC 61646 для тонкопленочных солнечных фотоэлектрических модулейПосредством диагностических измерений, электрических измерений, испытаний на облучение, испытаний на воздействие окружающей среды, механических испытаний пять типов испытаний и режимов проверки подтверждают требования к подтверждению конструкции и утверждению формы тонкопленочной солнечной энергии, а также подтверждают, что модуль может работать в обычных климатических условиях. требуется спецификацией в течение длительного времени.МЭК 61646-10.1 Процедура визуального контроляЦель: Проверить модуль на наличие визуальных дефектов.Характеристики при STC в соответствии со стандартными условиями испытаний IEC 61646-10.2.Цель: Используя естественный свет или симулятор класса А, в стандартных условиях испытаний (температура батареи: 25±2℃, интенсивность излучения: 1000 Втм^-2, стандартное распределение солнечного излучения в соответствии со стандартом IEC891), проверить электрические характеристики модуля с нагрузкой. изменять.МЭК 61646-10.3 Испытание изоляцииЦель: проверить наличие хорошей изоляции между токоведущими частями и корпусом модуля.МЭК 61646-10.4 Измерение температурных коэффициентовЦель: проверить текущий температурный коэффициент и температурный коэффициент напряжения при тестировании модуля. Измеренный температурный коэффициент действителен только для облучения, использованного в тесте. Для линейных модулей это справедливо в пределах ±30% этого облучения. Эта процедура дополняет стандарт IEC891, который определяет измерение этих коэффициентов для отдельных ячеек в репрезентативной партии. Температурный коэффициент тонкопленочного модуля солнечных элементов зависит от процесса термообработки используемого модуля. При использовании температурного коэффициента следует указывать условия термического испытания и результаты облучения процесса.МЭК 61646-10.5 Измерение номинальной рабочей температуры элемента (NOCT)Цель: проверить NOCT модуля.IEC 61646-10.6 Производительность в NOCTЦель: Когда номинальная рабочая температура батареи и интенсивность излучения составляют 800 Втм^-2, при стандартном распределении излучения солнечного спектра электрические характеристики модуля меняются в зависимости от нагрузки.IEC 61646-10.7 Характеристики при низкой освещенностиЦель: Определить электрические характеристики модулей под нагрузкой при естественном освещении или симуляторе класса А при 25 ℃ и 200 Втм^-2 (измерения с помощью соответствующей эталонной ячейки).IEC 61646-10.8 Испытание на открытом воздухеЦель: провести неизвестную оценку устойчивости модуля к воздействию внешних условий и показать любые эффекты деградации, которые не удалось обнаружить с помощью эксперимента или испытания.IEC 61646-10.9 Испытание горячих точекЦель: Определить способность модуля противостоять тепловым воздействиям, таким как старение упаковочного материала, растрескивание аккумулятора, нарушение внутреннего соединения, локальное затенение или появление пятен на краях, которые могут стать причиной таких дефектов.МЭК 61646-10.10 УФ-тест (УФ-тест)Цель: Чтобы подтвердить способность модуля противостоять ультрафиолетовому (УФ) излучению, новый УФ-тест описан в IEC1345, и при необходимости модуль следует подвергнуть воздействию света перед выполнением этого теста.IEC61646-10.11 Испытание на термоциклирование (термоциклирование)Цель: Подтвердить способность модуля противостоять термической неоднородности, усталостным и другим нагрузкам, возникающим вследствие многократных изменений температуры. Перед проведением этого испытания модуль должен быть отожжен. [Предварительное ВАХ-тест] относится к тесту после отжига. Будьте осторожны, не подвергайте модуль воздействию света перед окончательным ВАХ-тестом.Требования к тесту:а. Приборы для контроля электрической непрерывности внутри каждого модуля на протяжении всего процесса испытаний.б. Контролируйте целостность изоляции между одним из утопленных концов каждого модуля и рамой или опорной рамой.в. Записывайте температуру модуля на протяжении всего испытания и отслеживайте любые возможные обрывы цепи или замыкания на землю (во время испытания не должно быть периодических обрывов цепи или замыканий на землю).d. Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.IEC 61646-10.12 Испытание цикла замораживания при влажностиЦель: Проверить стойкость модуля к влиянию последующей минусовой температуры при высокой температуре и влажности, это не испытание на термоудар, перед получением испытания модуль должен быть отожжен и подвергнут термоциклическому испытанию, [ [Предварительное ВАХ-тест] относится к термическому циклу после испытания. Будьте осторожны, чтобы не подвергать модуль воздействию света перед окончательным ВАХ-тестом.Требования к тесту:а. Приборы для контроля электрической непрерывности внутри каждого модуля на протяжении всего процесса испытаний.б. Контролируйте целостность изоляции между одним из утопленных концов каждого модуля и рамой или опорной рамой.в. Записывайте температуру модуля на протяжении всего испытания и отслеживайте любые возможные обрывы цепи или обрывы заземления (во время испытания не должно быть периодических обрывов цепи или обрывов заземления).д. Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.IEC 61646-10.13 Испытание на влажное тепло (Влажное тепло)Цель: проверить способность модуля противостоять длительному проникновению влаги.Требования к испытаниям: Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.МЭК 61646-10.14 Прочность выводовЦель: определить, выдерживает ли крепление между выводным концом и выводным концом к корпусу модуля силу при нормальной установке и эксплуатации.IEC 61646-10.15 Испытание на скручиваниеЦель: Обнаружить возможные проблемы, вызванные установкой модуля на неидеальной конструкции.IEC 61646-10.16 Испытание механической нагрузкойЦель: Целью данного испытания является определение способности модуля противостоять ветру, снегу, льду или статическим нагрузкам.IEC 61646-10.17 Испытание градомЦель: Проверить ударостойкость модуля к граду.IEC 61646-10.18 Испытание на светопроницаемостьЦель: стабилизировать электрические свойства тонкопленочных модулей путем моделирования солнечного излучения.IEC 61646-10.19 Испытания на отжиг (отжиг)Цель: перед проверочным испытанием пленочный модуль отжигается. Если не отжиг, нагрев во время последующей процедуры испытания может маскировать затухание, вызванное другими причинами.IEC 61646-10.20 Испытание тока утечки во влажном состоянииЦель: оценить изоляцию модуля во влажных условиях эксплуатации и убедиться, что влага от дождя, тумана, росы или тающего снега не попадает в токоведущие части цепи модуля, что может вызвать коррозию, нарушение заземления или угрозу безопасности.
    ЧИТАТЬ ДАЛЕЕ
  • Испытание температурного цикла IEEE1513, испытание на замерзание влажности и испытание на термовлажность 1 Испытание температурного цикла IEEE1513, испытание на замерзание влажности и испытание на термовлажность 1
    Oct 07, 2024
    Испытание температурного цикла IEEE1513, испытание на замерзание влажности и испытание на термовлажность 1Среди требований к испытаниям на экологическую надежность ячеек, приемника и модуля концентрированных солнечных элементов есть свои собственные методы испытаний и условия испытаний при испытании на температурный цикл, испытании на замерзание влаги и испытании на термовлажность, а также существуют различия в подтверждении качества после тест. Таким образом, в спецификации IEEE1513 есть три теста на температурный цикл, тест на замерзание и тест на термовлажность, а их различия и методы тестирования разобраны для всеобщего сведения.Источник ссылки: IEEE Std 1513-2001.IEEE1513-5.7 Испытание на термический цикл IEEE1513-5.7 Испытание на термический циклЦель: определить, может ли принимающая сторона должным образом выдержать отказ, вызванный разницей температурного расширения между деталями и материалом соединения, особенно качеством паяного соединения и упаковки. Справочная информация: Испытания циклических температур концентрированных солнечных элементов выявили усталость медных радиаторов от сварки и требуют полной передачи ультразвука для обнаружения роста трещин в элементах (SAND92-0958 [B5]).Распространение трещин является функцией номера температурного цикла, начального полного паяного соединения, типа паяного соединения между батареей и радиатором из-за коэффициента теплового расширения и параметров температурного цикла, после испытания на термический цикл для проверки структуры приемника качество упаковки и изоляционного материала. Для программы существует два плана тестирования, протестированные следующим образом:Программа А и Программа БПроцедура А. Проверка сопротивления приемника при термической нагрузке, вызванной разницей температурного расширения.Процедура B: Температурный цикл перед испытанием на замерзание при влажностиПеред предварительной обработкой подчеркивается, что первоначальные дефекты принимающего материала вызваны реальным влажным замораживанием. Чтобы адаптироваться к различным конструкциям с концентрированной солнечной энергией, можно проверить температурные циклические испытания программы A и программы B, которые перечислены в Таблице 1 и Таблице 2.1. Эти приемники оснащены солнечными элементами, напрямую подключенными к медным радиаторам, а необходимые условия указаны в таблице первой строки.2. Это обеспечит обнаружение потенциальных механизмов сбоев, которые могут привести к дефектам, возникающим в процессе разработки. В этих конструкциях используются разные методы и могут использоваться альтернативные условия, как показано в таблице, для отсоединения радиатора батареи.Таблица 3 показывает, что приемная часть выполняет температурный цикл программы B перед альтернативой.Поскольку программа B в основном тестирует другие материалы на принимающей стороне, для всех конструкций предлагаются альтернативы.Таблица 1 – Проверка процедуры температурного цикла для приемниковПрограмма А – Термический циклВариантМаксимальная температураОбщее количество цикловТекущее приложениеТребуемый дизайнТКР-А110℃250NoАккумулятор приварен непосредственно к медному радиатору.ТКР-Б90℃500NoДругие записи дизайнаТКР-С90℃250I(прикладной) = IscДругие записи дизайнаТаблица 2 – Процедура испытания приемника температурным цикломПроцедура B. Температурный цикл перед испытанием на влажное замораживаниеВариантМаксимальная температураОбщее количество цикловТекущее приложениеТребуемый дизайнХФР-А 110℃100NoДокументация всех проектов. ХФР-Б 90℃200NoДокументация всех проектов. ХФР-С 90℃100I(прикладной) = IscДокументация всех проектов. Процедура: принимающая сторона подвергается температурному циклу от -40 °C до максимальной температуры (в соответствии с процедурой испытаний, приведенной в Таблицах 1 и Таблице 2). Циклическое испытание можно поместить в одну или две коробки из камера для ударных испытаний при температуре газа, цикл жидкостного шока не следует использовать, время выдержки составляет не менее 10 минут, а высокая и низкая температура должны находиться в пределах ±5 °C. Частота циклов не должна быть больше 24 циклов в день и не менее 4 циклов в день, рекомендуемая частота – 18 раз в день.Количество термических циклов и максимальная температура, необходимая для двух образцов, указаны в таблице 3 (процедура B на рисунке 1), после чего будет проведен визуальный осмотр и проверка электрических характеристик (см. 5.1 и 5.2). Эти образцы будут подвергнуты испытанию на влажное замораживание в соответствии с 5.8, а приемник большего размера будет соответствовать 4.1.1 (эта процедура показана на рисунке 2).Справочная информация: Целью испытания температурного цикла является ускорение испытания, которое проявляется в механизме кратковременного отказа до обнаружения отказа концентрирующего солнечного оборудования, поэтому испытание включает в себя возможность увидеть большую разницу температур за пределами модуля. Диапазон, верхний предел температурного цикла 60 ° C основан на температуре размягчения многих модульных акриловых линз, для других конструкций - на температуре модуля. Верхняя граница температурного цикла 90°С (см. Таблицу 3).Таблица 3 – Перечень условий испытаний для температурных циклов модуляПроцедура B. Предварительная обработка температурным циклом перед испытанием на влажное замораживание.ВариантМаксимальная температураОбщее количество цикловТекущее приложениеТребуемый дизайнТКМ-А 90℃50NoДокументация всех проектов. ТЭМ-Б 60℃200NoМожет потребоваться конструкция пластикового модуля линзы  
    ЧИТАТЬ ДАЛЕЕ
  • IEEE1513 Испытание температурного цикла и испытание на влажное замораживание, испытание на влажную жару 2 IEEE1513 Испытание температурного цикла и испытание на влажное замораживание, испытание на влажную жару 2
    Sep 29, 2024
    IEEE1513 Испытание температурного цикла и испытание на влажное замораживание, испытание на влажную жару 2Шаги:Оба модуля будут выполнять 200 температурных циклов в диапазоне от -40 °C до 60 °C или 50 циклов температурных циклов в диапазоне от -40 °C до 90 °C, как указано в ASTM E1171-99.Примечание:ASTM E1171-01: Метод испытания фотоэлектрического модуля при температуре контура и влажности.Относительную влажность контролировать не нужно.Изменение температуры не должно превышать 100℃/час.Время пребывания должно составлять не менее 10 минут, а высокая и низкая температура должны находиться в пределах ± 5 ℃.Требования:а. После циклического испытания модуль будет проверен на предмет каких-либо очевидных повреждений или деградации.б. На модуле не должно быть трещин и короблений, а уплотнительный материал не должен расслаиваться.в. Если проводится выборочная проверка электрических функций, выходная мощность должна составлять 90% или более при тех же условиях многих исходных основных параметров.Добавлен:IEEE1513-4.1.1 Репрезентативный модуль или тестовый образец приемника. Если размер полного модуля или приемника слишком велик, чтобы поместиться в существующую камеру для испытаний на воздействие окружающей среды, репрезентативный модуль или тестовый образец приемника можно заменить полноразмерным модулем или приемником.Эти тестовые образцы должны быть специально собраны со сменным приемником, так как если они содержат цепочку ячеек, подключенную к полноразмерному приемнику, цепочка батарей должна быть длинной и включать как минимум два байпасных диода, но в любом случае три ячейки - это относительно мало. , который суммирует включение связей с заменяемым приемным терминалом, должен быть таким же, как и полный модуль.Сменный приемник должен включать в себя компоненты, соответствующие другим модулям, включая объектив/корпус объектива, корпус приемника/приемника, задний сегмент/объектив заднего сегмента, корпус и разъем приемника. Будут проверены процедуры A, B и C.Для процедуры испытания на открытом воздухе D следует использовать два полноразмерных модуля.IEEE1513-5.8 Испытание цикла замораживания при влажности Испытание цикла замораживания при влажностиПолучательЦель:Определить, достаточна ли принимающая часть для устойчивости к коррозионному повреждению и способности расширения молекул материала при расширении влаги. Кроме того, замерзший водяной пар является стрессом для определения причины неисправности.Процедура:Образцы после циклического изменения температуры будут протестированы в соответствии с Таблицей 3 и подвергнуты испытанию на влажное замораживание при 85 ℃ и -40 ℃, влажности 85 % и 20 циклах. Согласно ASTM E1171-99, принимающая сторона с большим объемом должна относиться к 4.1.1.Требования:Приемная часть должна отвечать требованиям 5.7. Вынесите из резервуара с окружающей средой в течение 2–4 часов, а приемная часть должна соответствовать требованиям испытания на утечку изоляции высокого напряжения (см. 5.4).модульЦель:Определите, обладает ли модуль достаточной способностью противостоять вредной коррозии или увеличению различий в склеивании материалов.Процедура: Оба модуля будут подвергнуты испытаниям на влажное замораживание в течение 20 циклов, 4 или 10 циклов при температуре 85 °C, как показано в ASTM E1171-99.Обратите внимание, что максимальная температура 60 ° C ниже, чем на участке испытания на влажное замораживание на приемной стороне.Полное испытание изоляции высокого напряжения (см. 5.4) будет завершено после двух-четырехчасового цикла. После испытания изоляции высокого напряжения проводится испытание электрических характеристик, как описано в 5.2. Также возможна комплектация большими модулями, см. 4.1.1.Требования:а. После испытания модуль проверит наличие каких-либо очевидных повреждений или ухудшений и зафиксирует их.б. Модуль не должен иметь трещин, деформации или серьезной коррозии. Слоев герметизирующего материала быть не должно.в. Модуль должен пройти испытание изоляции высокого напряжения, как описано в IEEE1513-5.4.Если проводится выборочная электрическая функциональная проверка, выходная мощность может достигать 90% и более при тех же условиях многих исходных основных параметров.IEEE1513-5.10 Испытание на влажную жару IEEE1513-5.10 Испытание на влажную жаруЦель: Оценить эффект и способность принимающей стороны противостоять длительному проникновению влаги.Процедура: Тестовый приемник тестируется в камере для испытаний на воздействие окружающей среды при относительной влажности 85%±5% и температуре 85°C ±2°C, как описано в ASTM E1171-99. Это испытание должно быть завершено через 1000 часов, но можно добавить еще 60 часов для проведения испытания на утечку изоляции под высоким напряжением. Приемную часть можно использовать для тестирования.Требования: Принимающая сторона должна покинуть камеру для испытаний на влажный нагрев на 2–4 часа, чтобы пройти испытание на утечку изоляции высокого напряжения (см. 5.4) и пройти визуальный осмотр (см. 5.1). Если проводится выборочная электрическая проверка работоспособности, выходная мощность должна составлять 90% или более при тех же условиях многих исходных основных параметров.Процедуры тестирования и проверки модуля IEEE1513IEEE1513-5.1 Процедура визуального контроляЦель: установить текущий визуальный статус, чтобы принимающая сторона могла сравнить, прошли ли они каждый тест, и гарантировать, что они соответствуют требованиям для дальнейшего тестирования.IEEE1513-5.2 Испытание электрических характеристикЦель: Описать электрические характеристики тестового модуля и приемника и определить их пиковую выходную мощность.IEEE1513-5.3 Проверка целостности заземленияЦель: проверить целостность электрической цепи между всеми открытыми проводящими компонентами и заземляющим модулем.IEEE1513-5.4 Испытание электрической изоляции (сухое Hi-Po)Цель: обеспечить достаточную электрическую изоляцию между схемным модулем и любой внешней контактной проводящей частью для предотвращения коррозии и обеспечения безопасности работников.IEEE1513-5.5 Испытание сопротивления влажной изоляцииЦель: проверить, что влага не может проникнуть в электронно активную часть приемного конца, где она может вызвать коррозию, отказ заземления или выявить опасность для безопасности человека.IEEE1513-5.6 Испытание на распыление водыЦель: Полевые испытания на влагостойкость (FWRT) оценивают электрическую изоляцию модулей солнечных батарей в зависимости от условий эксплуатации с влажностью. В этом тесте моделируется сильный дождь или роса на его конфигурации и проводке, чтобы убедиться, что влага не попадает в используемую схему массива, что может повысить коррозионную активность, вызвать отказы заземления и создать угрозу электробезопасности для персонала или оборудования.IEEE1513-5.7 Испытание термического цикла (Тест термоцикла)Цель: определить, может ли принимающая сторона должным образом выдержать отказ, вызванный разницей в тепловом расширении деталей и материалов соединения.IEEE1513-5.8 Испытание цикла замораживания при влажностиЦель: Определить, достаточно ли устойчива принимающая деталь к коррозионным повреждениям и способности при расширении влаги расширять молекулы материала. Кроме того, замерзший водяной пар является стрессом для определения причины неисправности.IEEE1513-5.9 Тест на надежность оконечных устройствЦель: Чтобы обеспечить надежность проводов и разъемов, приложите внешние силы к каждой детали, чтобы убедиться, что они достаточно сильны, чтобы поддерживать обычные процедуры обращения.IEEE1513-5.10 Испытание на влажную жару (Испытание на влажную жару)Цель: оценить эффект и способность принимающей стороны противостоять длительному проникновению влаги. яEEE1513-5.11 Испытание на воздействие градаЦель: определить, может ли какой-либо компонент, особенно конденсатор, выдержать град. ИЕEE1513-5.12 Тепловой тест байпасного диода (тепловой тест байпасного диода)Цель: оценить наличие достаточного теплового расчета и использование обходных диодов с относительной долговременной надежностью для ограничения неблагоприятных последствий диффузии теплового сдвига модуля.IEEE1513-5.13 Испытание на выносливость в горячих точках (испытание на выносливость в горячих точках)Цель: оценить способность модулей выдерживать периодические тепловые сдвиги с течением времени, обычно связанные со сценариями отказов, такими как серьезные трещины или несоответствие клеточных чипов, одиночные отказы разомкнутой цепи или неравномерные тени (заштрихованные части). яEEE1513-5.14 Испытание на воздействие на открытом воздухе (Испытание на воздействие на открытом воздухе)Цель: Чтобы предварительно оценить способность модуля противостоять воздействию внешней среды (в том числе ультрафиолетовому излучению), снижение эффективности продукта не может быть обнаружено лабораторными испытаниями.IEEE1513-5.15 Испытание на повреждение внеосевого лучаЦель: Обеспечить разрушение любой части модуля из-за отклонения модуля концентрированного луча солнечного излучения. 
    ЧИТАТЬ ДАЛЕЕ
  • Применение камеры температурного цикла TCT в индустрии оптической связи Применение камеры температурного цикла TCT в индустрии оптической связи
    Sep 27, 2024
    Применение камеры температурного цикла TCT в индустрии оптической связиПоявление 5G заставляет людей почувствовать быстрое развитие мобильного Интернета, а также технологии оптической связи как важную основу. В настоящее время в Китае построена самая длинная в мире волоконно-оптическая сеть, и благодаря постоянному развитию технологии 5G технология оптической связи будет использоваться более широко. Развитие технологий оптической связи не только позволяет людям наслаждаться более высокой скоростью сети, но также открывает больше возможностей и проблем. Например, новые приложения, такие как облачные игры, VR и AR, требуют более стабильных и высокоскоростных сетей, и технология оптической связи может удовлетворить эти потребности. В то же время технология оптической связи также открыла больше инновационных возможностей, таких как интеллектуальная медицинская помощь, интеллектуальное производство и другие области, которые будут использовать технологию оптической связи для достижения более эффективной и точной работы. Но знаешь что? Эта удивительная технология не может быть реализована без использования оборудования для макроэкологических испытаний, особенно испытательной камеры температурного цикла TC, которая представляет собой испытательную камеру с быстрым изменением температуры. Эта статья знакомит вас с менеджером по качеству испытаний на надежность изделий оптической связи – лабораторией быстрого изменения температуры.Сначала давайте кратко поговорим об оптической связи. Некоторые люди также говорят, что это называется оптической связью, поэтому их двое, в конце концов, не является концепцией. По сути, это два одного и того же понятия. Оптическая связь — это использование оптических сигналов для коммуникационных технологий, а оптическая связь основана на оптической связи через оптические устройства, такие как оптические волокна и оптические кабели, для передачи данных. Широко используются технологии оптической связи, такие как ежедневное использование оптоволоконной широкополосной связи, оптические датчики мобильных телефонов, оптические измерения в аэрокосмической отрасли и так далее. Можно сказать, что оптическая связь стала важной частью современной области связи. Так почему же оптическая связь так популярна? Фактически, он имеет множество преимуществ, таких как высокоскоростная передача, большая полоса пропускания, низкие потери и так далее.Обычные продукты оптической связи включают в себя: оптический кабель, оптоволоконный коммутатор, оптоволоконный модем и т. д., используемые для передачи и приема оптических сигналов оборудования волоконно-оптической связи; Датчик температуры, датчик деформации, датчик смещения и т. д. могут измерять различные физические величины в режиме реального времени, а также другие оптоволоконные датчики; Оптический усилитель, легированный эрбием, оптический усилитель, легированный иттербием, рамановский усилитель и т. д., используемый для расширения интенсивности оптических сигналов и других оптических усилителей; Гелий-неоновый лазер, диодный лазер, волоконный лазер и т. д. являются источниками света в оптической связи, используемыми для получения высокояркого, направленного и когерентного лазерного света и других лазеров; Фотоприемники, оптические ограничители, фотодиоды и др. для приема оптических сигналов и преобразования их в электрические сигналы и другие оптические приемники; Оптические переключатели, оптические модуляторы, программируемые оптические матрицы и т. д. используются для управления и настройки передачи и маршрутизации оптических сигналов и других оптических контроллеров. Давайте возьмем в качестве примера мобильные телефоны и поговорим о применении продуктов оптической связи на мобильных телефонах:1. Оптическое волокно. Оптическое волокно обычно используется как часть линии связи. Из-за его высокой скорости передачи сигналы связи не подвержены влиянию внешних помех и других характеристик, оно стало важной частью мобильной телефонной связи.2. Фотоэлектрический преобразователь/оптический модуль: фотоэлектрический преобразователь и оптический модуль — это устройства, которые преобразуют оптические сигналы в электрические сигналы, а также являются очень важной частью мобильной телефонной связи. В эпоху высокоскоростной связи, такой как 4G и 5G, скорость и производительность такого оборудования необходимо постоянно улучшать, чтобы удовлетворить потребности в быстрой и стабильной связи.3. Модуль камеры. В мобильном телефоне модуль камеры обычно включает в себя ПЗС-матрицу, CMOS, оптический объектив и другие детали, а его качество и производительность также оказывают значительное влияние на качество оптической связи мобильного телефона.4. Дисплей. В дисплеях мобильных телефонов обычно используются OLED, AMOLED и другие технологии. Принцип этих технологий связан с оптикой, но также является важной частью оптической связи мобильных телефонов.5. Датчик освещенности: Датчик освещенности в основном используется в мобильных телефонах для измерения освещенности окружающей среды, определения приближения и распознавания жестов, а также является важным продуктом оптической связи для мобильных телефонов.Можно сказать, что продукты оптической связи заполняют все аспекты нашей жизни и работы. Однако условия производства и использования продуктов оптической связи часто изменчивы, например, погодные условия с высокими или низкими температурами при работе на открытом воздухе, или длительное использование также может столкнуться с изменениями теплового расширения и сжатия. Так как же достигается надежное использование этих продуктов? Здесь следует упомянуть нашего сегодняшнего главного героя — испытательную камеру с быстрым изменением температуры, также известную как TC-бокс в индустрии оптической связи. Чтобы гарантировать, что продукты оптической связи по-прежнему работают нормально в различных условиях окружающей среды, необходимо провести тесты на быстрое изменение температуры продуктов оптической связи. Испытательная камера с быстрым изменением температуры может моделировать различные условия температуры и влажности, а также мгновенно моделировать экстремальные изменения окружающей среды в реальном мире в быстром диапазоне. Так как же испытательная камера с быстрым изменением температуры применяется в индустрии оптической связи?1. Испытание производительности оптического модуля. Оптический модуль является ключевым компонентом оптической связи, таким как оптический приемопередатчик, оптический усилитель, оптический переключатель и т. д. Испытательная камера с быстрым изменением температуры может моделировать различные температурные условия и проверять производительность оптического модуля при различных температурах, чтобы оценить его адаптируемость и надежность.2. Проверка надежности оптических устройств: оптические устройства включают оптические волокна, оптические датчики, решетки, фотонные кристаллы, фотодиоды и т. д. Испытательная камера с быстрым изменением температуры может проверять изменение температуры этих оптических устройств и оценивать их надежность и срок службы на основе результаты испытаний.3. Имитация системы оптической связи. Испытательная камера с быстрым изменением температуры может имитировать различные условия окружающей среды в системе оптической связи, такие как температура, влажность, вибрация и т. д., для проверки производительности, надежности и стабильности всей системы.4. Технологические исследования и разработки. Индустрия оптической связи — это наукоемкая отрасль, которая нуждается в постоянной разработке новых технологий и новых продуктов. Испытательную камеру с быстрым изменением температуры можно использовать для проверки производительности и надежности новых продуктов, что помогает ускорить разработку и выход на рынок новых продуктов.Подводя итог, можно видеть, что в индустрии оптической связи испытательная камера с быстрым изменением температуры обычно используется для проверки производительности и надежности оптических модулей и оптических устройств. Затем, когда мы используем для испытаний испытательную камеру с быстрым изменением температуры, для разных продуктов оптической связи могут потребоваться разные стандарты. Ниже приведены стандарты испытаний на быстрое изменение температуры для некоторых распространенных продуктов оптической связи:1. Оптическое волокно: общие стандарты испытаний. Существуют следующие общие стандарты испытаний оптического волокна на быстрое изменение температуры: IEC 61300-2-22: стандарт определяет метод испытаний на стабильность и долговечность компонентов оптического волокна, в разделе 4.3 которого указаны термические метод испытания стабильности компонентов оптического волокна в случае быстрого изменения температуры компонентов оптического волокна для измерения и оценки. GR-326-CORE: Этот стандарт определяет требования к испытаниям на надежность оптоволоконных разъемов и адаптеров, включая испытания на термостойкость для оценки надежности оптоволоконных разъемов и адаптеров в условиях изменения температуры. GR-468-CORE: Этот стандарт определяет технические характеристики и методы испытаний оптоволоконных разъемов, включая испытания на температурный цикл, испытания на ускоренное старение и т. д. для проверки надежности и стабильности оптоволоконных разъемов в различных условиях окружающей среды. ASTM F2181: Этот стандарт определяет метод испытания волокна на разрушение в условиях высокой температуры и высокой влажности для оценки долговечности волокна. Вышеуказанные стандарты, такие как GB/T 2423.22-2012, тестируются и оцениваются на предмет надежности оптического волокна при быстрых изменениях температуры или длительных условиях высокой температуры и высокой влажности, что может помочь большинству производителей обеспечить качество и надежность. изделий из оптоволокна.2. Фотоэлектрический преобразователь/оптический модуль. Обычными стандартами испытаний на быстрое изменение температуры являются GB/T 2423.22-2012, GR-468-CORE, EIA/TIA-455-14 и IEEE 802.3. Эти стандарты в основном охватывают методы испытаний и конкретные этапы реализации фотоэлектрических преобразователей/оптических модулей, которые могут обеспечить производительность и надежность продукции в различных температурных средах. Среди них стандарт GR-468-CORE специально предназначен для требований к надежности оптических преобразователей и оптических модулей, включая испытания температурного цикла, испытания на влажную жару и другие испытания на воздействие окружающей среды, требующие от оптических преобразователей и оптических модулей поддержания стабильной и надежной работы в течение длительного времени. -срок использования.3. Оптический датчик. Обычными стандартами испытаний на быстрое изменение температуры являются GB/T 27726-2011, IEC 61300-2-43 и IEC 61300-2-6. Эти стандарты в основном охватывают методы испытаний и конкретные этапы проведения испытаний оптического датчика на изменение температуры, которые могут обеспечить производительность и надежность продукта в различных температурных средах. Среди них стандарт GB/T 27726-2011 является стандартом метода испытаний оптических датчиков в Китае, включая метод испытаний волоконно-оптических датчиков на воздействие окружающей среды, который требует, чтобы оптический датчик поддерживал стабильную работу в различных рабочих условиях. . Стандарт IEC 60749-15 является международным стандартом для испытаний электронных компонентов на температурный цикл, а также имеет эталонное значение для испытаний оптических датчиков на быстрое изменение температуры.4. Лазер: Общими стандартами испытаний на быстрое изменение температуры являются GB/T 2423.22-2012 «Экологические испытания электрических и электронных изделий, часть 2: Испытание Nb: испытание температурным циклом», GB/T 2423.38-2002 «Основные методы испытаний электрических компонентов, часть 38». : Испытание на термостойкость (IEC 60068-2-2), GB/T 13979-2009 «Метод испытания характеристик лазерного изделия», IEC 60825-1, IEC/TR 61282-10 и другие стандарты в основном охватывают метод испытания на изменение температуры лазера и конкретные этапы реализации. Он может обеспечить производительность и надежность продукции в различных температурных условиях. Среди них стандарт GB/T 13979-2009 является стандартом для метода испытаний лазерных продуктов в Китае, включая метод испытаний на воздействие окружающей среды. Стандарт IEC 60825-1 представляет собой спецификацию целостности лазерных изделий, а также существуют соответствующие положения для испытаний лазеров на быстрое изменение температуры. Кроме того, стандарт IEC/TR 61282-10 является одним из руководящих принципов проектирования волоконно-оптических систем связи, который включает методы защиты лазеров от окружающей среды.5. Оптический контроллер. Обычными стандартами испытаний на быстрое изменение температуры являются GR-1209-CORE и GR-1221-CORE. GR-1209-CORE — это стандарт надежности оптоволоконного оборудования, в основном предназначенный для проверки надежности оптических соединений и определяющий эксперименты по надежности систем оптических соединений. Среди них быстрый температурный цикл (FTC) — один из тестовых проектов, целью которого является проверка надежности волоконно-оптических модулей в быстро меняющихся температурных условиях. Во время испытания оптический контроллер должен выполнить циклическое изменение температуры в диапазоне от -40 ° C до 85 ° C. Во время температурного цикла модуль должен поддерживать нормальную работу и не выдавать аномальный выходной сигнал, а время испытания составляет 100 температурных циклов. . GR-1221-CORE — это стандарт надежности для пассивных оптоволоконных устройств, который подходит для тестирования пассивных устройств. Среди них испытание температурного цикла является одним из пунктов испытаний, который также требует испытания оптического контроллера в диапазоне от -40 ° C до 85 ° C, а время испытания составляет 100 циклов. Оба этих стандарта определяют испытание надежности оптического контроллера в условиях изменения температуры, которое может определить стабильность и надежность оптического контроллера в суровых условиях окружающей среды.В целом, разные стандарты испытаний на быстрое изменение температуры могут фокусироваться на разных параметрах испытаний и методах испытаний, поэтому рекомендуется выбирать соответствующие стандарты испытаний в соответствии с использованием конкретных продуктов.В последнее время, когда мы обсуждаем проверку надежности оптических модулей, наблюдается противоречивый показатель: количество температурных циклов проверки оптических модулей бывает и в 10 раз, и в 20 раз, и в 100 раз, и даже в 500 раз.Определения частоты в двух отраслевых стандартах:Ссылки на эти стандарты имеют четкие источники и являются правильными.По нашему мнению, для переднего оптического модуля 5G количество циклов составляет 500, а температура установлена на уровне -40 °C ~ 85 °C.Ниже приводится описание 10/20/100/500, приведенное выше в оригинальном тексте GR-468 (2004 г.).Из-за ограниченного пространства в этой статье рассказывается об использовании испытательной камеры с быстрым изменением температуры в индустрии оптической связи. Если у вас есть какие-либо вопросы при использовании испытательной камеры с быстрым изменением температуры и другого оборудования для испытаний на воздействие окружающей среды, добро пожаловать, чтобы обсудить с нами и учиться вместе.
    ЧИТАТЬ ДАЛЕЕ
  • МЭК 60068-2 МЭК 60068-2
    Sep 26, 2024
    МЭК 60068-2 Инструкции:IEC (Международная электротехническая ассоциация) является старейшей в мире неправительственной международной организацией по стандартизации электротехники, предназначенной для обеспечения жизнедеятельности людей электронной продукцией и разработки соответствующих спецификаций и методов испытаний, таких как: мейнфреймы, ноутбуки, планшеты, смартфоны, ЖК-экраны, игровые приставки... Основной дух этого теста вытекает из IEC, основным представителем которого является IEC60068-2, условия испытаний на воздействие окружающей среды. Его [экологические испытания] относятся к образцу, подвергающемуся воздействию естественной и искусственной среды, но производительность его оцениваются условия фактического использования, транспортировки и хранения. Экологическое испытание образца может быть единообразным и линейным за счет использования стандартизированных стандартов. Экологические испытания могут моделировать способность продукта адаптироваться к изменениям окружающей среды (температура, влажность, вибрация, изменение температуры, температурный шок, солевой туман, пыль) на различных этапах (хранение, транспортировка, использование). И убедитесь, что это не повлияет на характеристики и качество самого продукта, низкая температура, высокая температура, температурное воздействие могут вызвать механическое напряжение, это напряжение делает испытуемый образец более чувствительным к последующему испытанию, удар, вибрация могут вызвать механическое напряжение. стресс, этот стресс может привести к немедленному повреждению образца, давлению воздуха, переменному влажному теплу, постоянному влажному теплу, коррозионному применению этих испытаний и может продолжаться воздействие термических и механических стресс-тестов.Важный обмен спецификациями IEC:IEC69968-2-1- ХолодныйЦель испытания: проверить способность автомобильных компонентов, оборудования или других комплектующих изделий работать и храниться при низких температурах.Методы испытаний делятся на:1.Aa: Метод внезапного изменения температуры для нетермических образцов.2.Ab: Метод температурного градиента для нетермических образцов.3.Ad: Метод температурного градиента термогенного образца.Примечание:Аа:1. Статическое испытание (без источника питания).2. Прежде чем устанавливать испытуемую деталь, сначала охладите ее до температуры, указанной в спецификации.3. После стабилизации разница температур в каждой точке образца не превышает ±3 ℃.4. После завершения испытания образец помещают под стандартное атмосферное давление до полного удаления тумана: в процессе переноса к образцу не подается напряжение.5. Измерьте после возвращения в исходное состояние (минимум 1 час).Аб:1. Статическое испытание (без источника питания).2. Образец помещается в камеру при комнатной температуре, а изменение температуры в камере не превышает 1 ℃ в минуту.3. После испытания образец должен храниться в камере, а изменение температуры в камере не должно превышать 1 ℃ в минуту для возврата к стандартному атмосферному давлению; Образец не следует заряжать во время изменения температуры.4. Измерьте после возвращения в исходное состояние (минимум 1 час). (Разница между температурой и температурой воздуха более 5℃).Ак:1. Динамическое испытание (плюс источник питания), когда температура образца после зарядки стабильна, температура поверхности образца является самой горячей точкой.2. Образец помещается в камеру при комнатной температуре, а изменение температуры в камере не превышает 1 ℃ в минуту.3. После испытания образец следует хранить в камере, а изменение температуры в камере не должно превышать 1 ℃ в минуту и возвращаться к стандартному атмосферному давлению; Образец не следует заряжать во время изменения температуры.4. Измерьте после возвращения в исходное состояние (минимум 1 час).Условия испытаний:1. Температура:-65,-55,-40,-25,-10,-5,+5°C.2. Время пребывания: 16.02.72.96 часов.3. Скорость изменения температуры: не более 1 ℃ в минуту.4. Погрешность допуска: +3°C.Тестовая установка:1. Образцы, выделяющие тепло, следует размещать в центре испытательной камеры и на стене камеры высотой > 15 см.Отношение пробы к образцу размером > 15 см в испытательном шкафу к объему испытания > 5:1.2. Для тепловыделяющих образцов при использовании конвекции воздуха скорость потока должна быть минимальной.3. Образец должен быть распакован, а приспособление должно иметь характеристики высокой теплопроводности. МЭК 60068-2-2- Сухое тепло.Цель испытания: проверить способность компонентов, оборудования или других комплектующих изделий работать и храниться в условиях высоких температур.Метод испытания:1. Ba: метод внезапного изменения температуры для нетермических образцов.2.Bb: Метод температурного градиента для нетермических образцов.3.Bc: Метод внезапного изменения температуры для термогенных образцов.4.Bd: Метод температурного градиента для термогенных образцов.Примечание:Ба:1. Статическое испытание (без источника питания).2. Прежде чем устанавливать испытуемую деталь, сначала охладите ее до температуры, указанной в спецификации.3. После стабилизации разница температур в каждой точке образца не превышает +5 ℃.4. После завершения испытания поместите образец под стандартное атмосферное давление и верните его в исходное состояние (минимум на 1 час).Бб:1. Статическое испытание (без источника питания).2. Образец помещается в камеру при комнатной температуре, при этом изменение температуры камеры не превышает 1 ℃ в минуту, а температура снижается до значения температуры, указанного в спецификации.3. После испытания образец должен храниться в камере, а изменение температуры в камере не должно превышать 1 ℃ в минуту для возврата к стандартному атмосферному давлению; Образец не следует заряжать во время изменения температуры.4. Измерьте после возвращения в исходное состояние (минимум 1 час).до нашей эры:1. Динамическое испытание (внешний источник питания). Когда температура образца после зарядки стабильна, разница между температурой самой горячей точки на поверхности образца и температурой воздуха составляет более 5 ℃.2. Нагрейте до температуры, указанной в спецификации, перед установкой испытуемой детали.3. После стабилизации разница температур в каждой точке образца не превышает +5 ℃.4. После завершения испытания образец будет помещен под стандартное атмосферное давление, а измерение будет проведено после возвращения в исходное состояние (не менее 1 часа).5. Средняя температура десятичной точки в плоскости 0–50 мм на нижней поверхности образца.Д:1. Динамическое испытание (внешний источник питания), когда температура образца после зарядки стабильна, температура самой горячей точки на поверхности образца более чем на 5°C отличается от температуры воздуха.2. Образец помещается в камеру при комнатной температуре, при этом изменение температуры в камере не превышает 1 ℃ в минуту и повышается до указанного значения температуры.3. Возврат к нормальному атмосферному давлению; Образец не следует заряжать во время изменения температуры.4. Измерьте после возвращения в исходное состояние (минимум 1 час).Условия испытаний:1. Температура 1000,800,630,500,400,315,250,200,175,155,125,100,85,70,55,40,30 ℃.1. Время пребывания: 16.02.72.96 часов.2. Скорость изменения температуры: не более 1 ℃ в минуту. (В среднем за 5 минут)3. Ошибка допуска: допуск ±2 ℃ ниже 200 ℃. (допуск 200~1000℃ ±2%) IEC 60068-2-2- Метод испытаний Ca: Постоянное влажное тепло.1. Цель испытания:Целью данного метода испытаний является определение приспособленности компонентов, оборудования или других изделий к эксплуатации и хранению при постоянной температуре и высокой относительной влажности.Шаг 2: Область примененияЭтот метод испытаний можно применять как к теплорассеивающим, так и к нетеплорассеивающим образцам.3. Никаких ограничений4. Этапы тестирования:4.1 Перед испытанием образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.4.2 Образец для испытаний должен быть помещен в испытательный шкаф в соответствии с соответствующими техническими условиями. Во избежание образования капель воды на испытуемом образце после его помещения в шкаф лучше всего заранее подогреть температуру испытуемого образца до температурного режима в испытательном шкафу.4.3 Образец должен быть изолирован в соответствии с указанным местом проживания.4.4 Если это указано в соответствующих спецификациях, функциональные испытания и измерения должны проводиться во время или после испытания, причем функциональные испытания должны проводиться в соответствии с циклом, требуемым в спецификациях, и испытательные образцы не должны выводиться из испытания. кабинет.4.5 После испытания образец должен быть помещен в стандартные атмосферные условия не менее чем на один и не более чем на два часа для возвращения в исходное состояние. В зависимости от характеристик образца или различной лабораторной энергии образец можно извлечь или оставить в испытательной камере для ожидания восстановления, если вы хотите, чтобы время удаления было как можно короче, желательно не более пяти минут. при хранении в боксе влажность должна быть снижена до 73–77% относительной влажности в течение 30 минут, а температура также должна достичь лабораторной температуры в течение 30 минут в диапазоне +1 ℃.5. Условия испытаний5.1 Температура испытания: Температура в испытательном шкафу должна поддерживаться в пределах 40+2°С.5.2 Относительная влажность: Влажность в испытательной камере должна поддерживаться на уровне 93 (+2/-3) % относительной влажности в пределах указанного диапазона.5.3 Время пребывания: Время пребывания может составлять 4 дня, 10 дней, 21 день или 56 дней.5.4 Допуск теста: допуск температуры +2 ℃, ошибка измерения содержимого пакета, медленное изменение температуры и разница температур в температурном шкафу. Однако, чтобы облегчить поддержание влажности в определенном диапазоне, температура любых двух точек испытательного шкафа должна поддерживаться в минимальном диапазоне, насколько это возможно, в любое время. Если разница температур превышает 1°С, влажность выходит за пределы допустимого диапазона. Поэтому даже кратковременные изменения температуры, возможно, придется контролировать в пределах 1°С.6. Тестовая установка6.1 В испытательном шкафу должны быть установлены датчики температуры и влажности для контроля температуры и влажности в шкафу.6.2 На испытуемом образце в верхней части или на стенке испытательной камеры не должно быть капель конденсата.6.3 Конденсированную воду в испытательном шкафу необходимо сливать непрерывно и не использовать повторно, пока она не будет очищена (повторно очищена).6.4 Если влажность в испытательной камере достигается путем распыления воды в испытательную камеру, коэффициент влагостойкости должен быть не менее 500 Ом.7. Другое7.1 Условия температуры и влажности в испытательном шкафу должны быть одинаковыми и аналогичны условиям вблизи датчика температуры и влажности.7.2 Условия температуры и влажности в испытательном шкафу не должны изменяться во время включения или функционального испытания образца.7.3 Меры предосторожности, которые необходимо принять при удалении влаги с поверхности образца, должны быть подробно описаны в соответствующих технических условиях. IEC 68-2-14 Метод испытаний N: Изменение температуры1. Цель испытанияЦелью этого метода испытаний является определение влияния на окружающую среду изменения температуры или непрерывного изменения температуры.Шаг 2: Область примененияЭтот метод испытаний можно разделить на:Метод испытания Na: Быстрое изменение температуры в течение определенного времени.Метод испытаний Nb: Изменение температуры при заданном изменении температуры.Метод испытания Nc: Быстрое изменение температуры методом двойного погружения в жидкость.Первые два пункта применяются к компонентам, оборудованию или другим изделиям, а третий пункт применяется к стеклянно-металлическим уплотнениям и аналогичным изделиям.Шаг 3. ОграничениеЭтот метод испытаний не подтверждает воздействие высоких или низких температур на окружающую среду, и если такие условия должны быть подтверждены, «Метод испытания A IEC68-2-1: «холод» или «Метод испытания B IEC 60068-2-2: сухое тепло». следует использовать.4. Процедура испытания4.1 Метод испытаний Na:Быстрое изменение температуры в определенное время4.1.1 Перед испытанием образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.4.1.2 Тип образца должен быть распакован, обесточен и готов к использованию или другим условиям, указанным в соответствующих спецификациях. Исходным состоянием образца была комнатная температура в лаборатории.4.1.3 Отрегулируйте температуру двух температурных шкафов соответственно в соответствии с указанными условиями высокой и низкой температуры.4.1.4 Поместите образец в низкотемпературный шкаф и поддерживайте его в тепле в течение указанного времени пребывания.4.1.5 Переместить образец в высокотемпературный шкаф и поддерживать его в тепле в течение указанного времени пребывания.4.1.6 Время перехода от высокой и низкой температуры должно зависеть от условий испытаний.4.1.7 Повторите процедуру шагов 4.1.4 и 4.1.5 четыре раза.4.1.8 После испытания образец должен быть помещен в стандартные атмосферные условия и выдержан в течение определенного времени, чтобы образец достиг температурной стабильности. Время ответа должно соответствовать соответствующим правилам.4.1.9 После испытания образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими техническими условиями.4.2 Метод испытаний Nb:Изменение температуры при определенном изменении температуры4.2.1 Перед испытанием образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.4.2.2 Поместите образец в термошкаф. Образец для испытаний должен быть распакован, обесточен и готов к использованию или к другим условиям, указанным в соответствующих спецификациях. Исходным состоянием образца была комнатная температура в лаборатории.Образец может быть введен в эксплуатацию, если этого требуют соответствующие технические условия.4.2.3 Температура шкафа должна быть снижена до предписанного низкого температурного режима, а изоляция должна быть выполнена в соответствии с предписанным временем пребывания.4.2.4 Температура шкафа должна быть повышена до указанного высокотемпературного режима, а сохранение тепла должно осуществляться в соответствии с указанным временем пребывания.4.2.5 Изменение температуры высокой и низкой температуры должно зависеть от условий испытаний.4.2.6 Повторите процедуру, описанную в шагах 4.2.3 и 4.2.4:Во время испытания должны быть проведены электрические и механические испытания.Запишите время, потраченное на электрические и механические испытания.После испытания образец следует поместить в стандартные атмосферные условия и выдержать в течение определенного времени, чтобы образец достиг времени восстановления температурной стабильности, указанного в соответствующих спецификациях.После испытания образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.5. Условия испытанийУсловия испытания могут быть выбраны по следующим соответствующим температурным условиям и времени испытания или в соответствии с соответствующими спецификациями:5.1 Метод испытаний Na:Быстрое изменение температуры в определенное времяВысокая температура: 1000800630500400315250200175155125100,85,70,55,4030°CНизкая температура:-65,-55,-40,-25.-10.-5°C.Влажность: Содержание паров на кубический метр воздуха должно быть менее 20 грамм (что эквивалентно 50% относительной влажности при 35 ° C).Время пребывания: Время регулировки температуры температурного шкафа может составлять 3 часа, 2 часа, 1 час, 30 минут или 10 минут, если это не предусмотрено, оно устанавливается на 3 часа. После помещения образца в температурный шкаф время регулирования температуры не может превышать одну десятую времени пребывания. Время передачи: вручную 2–3 минуты, автоматически менее 30 секунд, небольшой образец менее 10 секунд.Количество циклов: 5 циклов.Допуск теста: Допуск температуры ниже 200 ℃ составляет + 2 ℃.Допуск температуры от 250 до 1000°С составляет +2% от температуры испытания. Если размер температурного шкафа не может соответствовать вышеуказанным требованиям допуска, допуск можно ослабить: допуск температуры ниже 100 °C составляет ±3 °C, а допуск температуры между 100 и 200 °C составляет ±5. °С (в отчете должно быть указано ослабление допуска).5.2 Метод испытаний Nb:Изменение температуры при определенном изменении температурыВысокая температура: 1000800630500400315250200175155125100,85,70 55403 0 'CНизкая температура:-65,-55,-40,-25,-10,-5,5℃.Влажность: Паров на кубический метр воздуха должно быть менее 20 граммов (что эквивалентно относительной влажности 50% при 35 ° C). Время пребывания: включая время подъема и охлаждения, может составлять 3 часа, 2 часа, 1 час, 30 минут или 10 минут. , если условия нет, установите на 3 часа.Изменчивость температуры: Среднее колебание температуры температурного шкафа в течение 5 минут составляет 1+0,2°С/мин, 3+0,6°С/мин или 5+1°С/мин.Количество циклов: 2 цикла.Допуск теста: Допуск температуры ниже 200 ℃ составляет + 2 ℃.Допуск температуры от 250 до 1000 ℃C составляет +2% от температуры испытания. Если размер температурного шкафа не соответствует вышеуказанным требованиям к допускам, допуск можно уменьшить. Допуск температуры ниже 100°С - +3°С. Температуры между 100°С и 200°С - +5°С. (В отчете должно быть указано ослабление допуска).6. Тестовая установка6.1 Метод испытаний Na:Быстрое изменение температуры в определенное времяРазница между температурой внутренних стенок высоко- и низкотемпературных шкафов и спецификациями температурных испытаний не должна превышать 3% и 8% (показана в °К) соответственно, чтобы избежать проблем с тепловым излучением.Термогенный образец должен быть помещен в центр испытательной камеры, насколько это возможно, а расстояние между образцом и стенкой камеры, образцом и образцом должно быть больше 10 см, а соотношение объема температуры соотношение шкафа и образца должно быть больше 5:1.6.2 Метод испытаний Nb:Изменение температуры при определенном изменении температурыПеред испытанием образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.Образец должен находиться в распакованном, обесточенном и готовом к использованию состоянии или в других условиях, указанных в соответствующих спецификациях. Исходным состоянием образца была комнатная температура в лаборатории.Отрегулируйте температуру двух температурных шкафов соответственно в соответствии с указанными условиями высокой и низкой температуры.Образец помещают в низкотемпературный шкаф и выдерживают в тепле в течение указанного времени пребывания.Образец помещают в высокотемпературный шкаф и изолируют в соответствии с указанным временем пребывания.Время перехода от высокой и низкой температуры должно выполняться в соответствии с условиями испытаний.Повторите процедуру шагов d и e четыре раза.После испытания образец следует поместить в стандартные атмосферные условия и выдержать в течение определенного времени, чтобы образец достиг времени восстановления температурной стабильности, указанного в соответствующих спецификациях.После испытания образцы должны быть проверены визуально, электрически и механически в соответствии с соответствующими спецификациями.6.3 Метод испытания НЗ:Быстрое изменение температуры методом двойного жидкостного замачиванияЖидкость, используемая при испытании, должна быть совместима с образцом и не должна причинять ему вреда.7. Другие7.1 Метод испытаний Na:Быстрое изменение температуры в определенное времяКогда образец помещается в температурный шкаф, температура и скорость воздушного потока в шкафу должны достичь заданных температурных характеристик и допуска в течение одной десятой времени выдержки.Воздух в камере должен поддерживаться по кругу, а скорость потока воздуха возле образца должна быть не менее 2 метров в секунду (2 м/с).Если образец переносится из высоко- или низкотемпературного шкафа, время выдержки по каким-либо причинам не может быть завершено, он остается в предыдущем состоянии выдержки (предпочтительно при низкой температуре).7.2 Метод испытаний Nb:Воздух в камере должен поддерживаться по кругу с определенной температурой, а скорость потока воздуха вблизи образца должна быть не менее 2 метров в секунду (2 м/с).7.3 Метод испытания НЗ:Быстрое изменение температуры методом двойного жидкостного замачиванияКогда образец погружен в жидкость, его можно быстро перемещать между двумя контейнерами, при этом жидкость нельзя перемешивать. 
    ЧИТАТЬ ДАЛЕЕ
  • Что такое взрывозащищенные устройства для высоких и низких температур? Что такое взрывозащищенные устройства для высоких и низких температур?
    Sep 26, 2024
    Что такое взрывозащищенные устройства для высоких и низких температур?Из-за особенностей тестируемого продукта в процессе тестирования тестируемый продукт может выделять большое количество газа. в состоянии высокой температуры или высокого давления, который может загореться и взорваться. Для обеспечения безопасности производства в качестве дополнительного оборудования могут использоваться устройства превентивной защиты. Таким образом, камера для испытаний при высоких и низких температурах необходимо добавить специальные устройства - взрывозащищенные устройства при испытаниях этих специальных изделий. Сегодня поговорим о том, что такое высокотемпературные и низкотемпературные взрывозащищенные устройства.1. Порт сброса давленияКогда количество воздуха, образующегося в испытательной камере, увеличивается и давление газа в камере достигает порогового значения, порт сброса давления автоматически открывается и сбрасывает давление наружу. Такая конструкция гарантирует, что при избыточном давлении в системе давление может быть сброшено, тем самым предотвращая разрушение или взрыв системы. Расположение и количество портов сброса давления определяются в соответствии с требованиями конструкции и применения конкретной системы пожаротушения.2. Детектор дымаДетектор дыма в основном обеспечивает предотвращение пожара путем контроля концентрации дыма. Ионный датчик дыма используется внутри детектора дыма. Ионный датчик дыма — это своего рода датчик с передовой технологией, стабильной и надежной работой. Когда концентрация частиц дыма в камере превышает пороговое значение, он подает сигнал тревоги, напоминая производству о необходимости остановки работы и достижения эффекта предотвращения пожара.3. Детектор газаДетектор газа – это прибор, который определяет концентрацию газа. Прибор подходит для опасных мест, где присутствуют горючие или токсичные газы, и может непрерывно определять содержание измеряемого газа в воздухе в пределах нижнего предела взрываемости в течение длительного времени. Газ диффундирует в рабочий электрод датчика через заднюю часть пористой пленки, где газ окисляется или восстанавливается. Эта электрохимическая реакция вызывает изменение тока, протекающего через внешнюю цепь, и концентрацию газа можно измерить, измерив величину тока.4. Система дымоудаленияВоздухозаборник нагнетательного вентилятора напрямую связан с наружным воздухом. Чтобы предотвратить загрязнение наружного воздуха дымом, воздухозаборное отверстие приточного вентилятора не должно располагаться на одном уровне с воздуховыпускным отверстием вытяжной машины. На выпускной или впускной воздушной трубе вентилятора должен быть установлен односторонний воздушный клапан. Механическая система дымоудаления использует дымоудаляющий вентилятор для механического вытяжного воздуха. Согласно соответствующей информации, хорошо спроектированная механическая система дымоудаления может отводить 80% тепла при пожаре, благодаря чему температура места пожара значительно снижается, и она играет важную роль в безопасности эвакуации персонала и пожара. боевые действия.5. Электромагнитный замок и механическая дверная пряжка.Электромагнитный замок использует электромагнитный принцип для фиксации корпуса замка без необходимости использования механического язычка замка, поэтому в электромагнитном замке не существует возможности механического повреждения язычка замка или принудительного разрушения. Электромагнитный замок обладает высокой ударопрочностью: когда на корпус замка действует внешняя сила удара, корпус замка не будет легко разрушен, и в случае взрыва будут приняты определенные защитные меры.6. Автоматическое устройство пожаротушения.Автоматическое устройство пожаротушения в основном состоит из четырех частей: детектора (детектор тепловой энергии, детектора пламени, детектора дыма), огнетушителя (углекислотного огнетушителя), цифровой сигнализации контроля температуры и модуля связи. С помощью модуля цифровой связи в устройстве можно удаленно контролировать и контролировать изменения температуры в режиме реального времени, состояние сигнализации и информацию об огнетушителе в зоне пожара, что позволяет не только удаленно контролировать различные состояния автоматического устройства пожаротушения, но и также контролировать изменения в зоне пожара в режиме реального времени, что может свести к минимуму потери жизни и имущества при возникновении пожара.7. Индикатор и сигнальная лампа.Сообщайте о состоянии оборудования или состоянии передачи с помощью визуальных и акустических сигналов операторам станков, техническим специалистам, руководителям производства и персоналу завода. 
    ЧИТАТЬ ДАЛЕЕ
1 2
В общей сложности 2страницы

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

связаться с нами