Принцип измерения гигрометра в испытательной камере при высоких и низких температурах
Температура и влажность — это процентное соотношение количества водяного пара (давление насыщенного пара), содержащегося в газе (обычно воздухе), и количества насыщенного водяного пара (давление насыщенного пара) в том же случае, что и воздух, выраженное в относительной влажности %. Влажность издавна имела тесную связь с жизнью, но ее было трудно измерить количественно. Выражением влажности является влажность, относительная влажность, точка росы, соотношение влаги и сухого газа (вес или объем) и так далее.
Метод измерения влажности гигрографический метод измерения влажности по принципу деления на двадцать или тридцать. Но измерение влажности всегда является одной из сложных проблем в мировой области измерений. На первый взгляд простое количественное значение в глубине включает в себя довольно сложный физико-химический теоретический анализ и расчеты, новички могут игнорировать многие факторы, на которые необходимо обращать внимание при измерении влажности, что влияет на разумное использование датчиков.
Распространенными методами измерения влажности являются: метод точки росы, метод влажного и сухого термометра и метод электронного датчика, динамический метод (метод двойного давления, метод двойной температуры, шунтирующий метод), статический метод (метод насыщенной соли, метод серной кислоты).
1. Гигрограф метода точки росы: предназначен для измерения температуры, когда влажный воздух достигает насыщения, является прямым результатом термодинамики, высокой точностью и широким диапазоном измерений. Прецизионный прибор для измерения точки росы может достигать точности ±0,2°C или даже более высокой. Однако измеритель точки росы с холодным зеркалом на современном оптоэлектрическом принципе стоит дорого и часто используется со стандартными генераторами влажности.
2. Гигрометр с мокрым и сухим термометром: это метод влажного измерения, изобретенный в 18 веке. Он имеет давнюю историю и широко используется. Метод мокрого и сухого термометра является косвенным методом, который преобразует значение влажности из уравнения мокрого и сухого термометра, причем это уравнение является условным: то есть скорость ветра возле влажного термометра должна достигать более 2,5 м/с. Обычный термометр с мокрым и сухим термометром упрощает это условие, поэтому его точность составляет всего 5 ~ 7% относительной влажности, а мокрый и сухой термометр не относятся к статическому методу, не думайте, что просто улучшить точность измерения двух термометров эквивалентно повышению точности измерений гигрометра.
3. Электронный гигрометр с датчиком влажности: электронные датчики влажности и измерение влажности относятся к отрасли, которая выросла в 1990-х годах в последние годы, в стране и за рубежом в области исследований и разработок датчиков влажности достигнут большой прогресс. Датчики влажности быстро развиваются от простых датчиков влажности до интегрированных, интеллектуальных, многопараметрических датчиков, создавая благоприятные условия для разработки нового поколения систем измерения и контроля влажности, а также поднимая технологии измерения влажности на новый уровень.
4. Метод двойного давления, гигрометр с двойной температурой: основан на термодинамическом принципе баланса P, V, T, время баланса больше, шунтирующий метод основан на точном смешивании влаги и сухого воздуха. Благодаря использованию современных средств измерения и контроля эти устройства могут быть достаточно точными, но из-за сложного оборудования, дорогостоящей, трудоемкой эксплуатации, используемой в основном в качестве эталонных измерений, точность их измерений может достигать ±2% относительной влажности и более.
5. Статический метод гигрометра насыщенных солей: это распространенный метод измерения влажности, простой и легкий. Однако метод насыщенных солей предъявляет строгие требования к балансу двух фаз жидкости и газа, а также высокие требования к стабильности температуры окружающей среды. Для балансировки требуется много времени, а в точках с низкой влажностью требуется еще больше времени. Особенно, когда разница влажности между помещением и бутылкой велика, ее необходимо балансировать в течение 6–8 часов каждый раз, когда ее открывают.
Эффективность электронного расширительного клапана в испытательной камере при высоких и низких температурахЭлектронный расширительный клапан камера для испытаний при высоких и низких температурах регулирует скорость подачи воды в испаритель кондиционера в соответствии с заданным программным потоком, который называется электронным расширительным клапаном, поскольку он относится к режиму электронной регулировки. Он объединяет тенденцию развития холодильной мехатроники с непревзойденными характеристиками расширительного клапана и представляет собой стандарт для интеллектуальной работы системы охлаждения с использованием испытательной камеры с высокой и низкой температурой. Это своего рода автоматическое управление защитой окружающей среды и энергосберегающими компонентами с большими перспективами развития, и это ориентация тенденции развития предложения высоко- и низкотемпературной испытательной камеры в будущем.Основное назначение электронного расширительного клапана и расширительного клапана кондиционирования горячего воздуха в основном одинаковое, а структура различна, но по характеристикам они имеют большие различия. С точки зрения управления и обслуживания электронный расширительный клапан состоит из трех частей: платы управления, электрического привода и контроллера. Вообще говоря, большая часть электронного расширительного клапана относится только к электрическому приводу, то есть к управляемому приводному оборудованию и масляной плате. Фактически только эта часть не может работать.Ключевая аппаратная конфигурация платы управления электронным расширительным клапаном разработана с помощью однокристального микрокомпьютера, например, плата управления также должна управлять преобразованием частоты постоянного тока холодильного компрессора и центробежного вентилятора, а метод каскада из нескольких машин обычно является выбрано. Контроллер электронного расширительного клапана обычно использует термосопротивление или термосопротивление. Электронный расширительный клапан, являющийся новым типом гидравлической системы управления, был ранним, чтобы улучшить определение организации дроссельной заслонки, что является ключевым шагом интеллектуальной системы холодильной системы, является ключевым способом и обеспечивает достаточную модернизацию холодильной системы, чтобы действительно поддерживать, является представителем машиностроения и электротехники холодильной системы, используется во все большем количестве отраслей промышленности. Благодаря выбору электронных расширительных клапанов повысилось понимание определенного типа подчинения системы расширительным клапанам, существующему во всем процессе схемы проектирования холодильной установки, а также появился новый образец расширительных клапанов кондиционирования воздуха для услуг по усовершенствованию системы. сыграл ключевую роль в тенденции развития холодильной промышленности.Испытательная камера для высоких и низких температур может завершить процесс испытаний в соответствии с заранее заданной кривой и может точно контролировать скорость температуры в диапазоне мощности нагрева, а также может контролировать скорость нагрева и охлаждения в соответствии с наклоном кривой. установить кривую.Контроль температуры - это процесс нагрева, нагрев испытательной камеры при высоких и низких температурах с использованием независимого нагрева, высокоскоростной нагревательный провод из никель-хромового сплава в дальнем инфракрасном диапазоне, скоординированный контроль температуры в системе P.I.D + S.R, посредством микрокомпьютерного расчета выходной мощности, чтобы получить высокоточные и высокоэффективные преимущества электроэнергии. Для достижения быстрого нагрева и высокой температуры обычно применяется метод увеличения количества нагревательных проводов и улучшения производительности программного обеспечения по контролю температуры. Благодаря использованию компрессоров и циркуляционных вентиляторов международных марок камера имеет равномерное распределение температуры, высокую эффективность использования экологически чистого хладагента, низкое энергопотребление и экономию энергии. Использование технологии регулирования энергии при проектировании холодильной системы позволяет не только обеспечить нормальную работу агрегата, но и эффективно регулировать энергопотребление и холодопроизводительность, чтобы холодильная система находилась в хорошем рабочем состоянии.
Технические характеристики системы охлаждения и регулирования температуры высоко- и низкотемпературной испытательной камерыКамера для испытаний при высоких и низких температурах это своего рода испытательное оборудование, широко используемое в различных отраслях промышленности, которое широко используется для моделирования различных условий окружающей среды и проверки долговечности, надежности и коррозионной стойкости продукции. Технические характеристики высоко- и низкотемпературной испытательной камеры в основном отражаются в ее системе охлаждения и системе контроля температуры.Прежде всего, холодильная система высоко- и низкотемпературной испытательной камеры имеет высокую холодопроизводительность и скорость охлаждения. В процессе контроля температуры необходима система охлаждения для быстрого снижения температуры внутри испытательной камеры. В настоящее время основная холодильная система в основном состоит из двух видов компрессионной холодильной системы и системы циркуляции хладагента. Среди них компрессионная холодильная система обладает высокой холодопроизводительностью и скоростью охлаждения, что позволяет быстро снизить температуру внутри испытательной камеры до заданной температуры, а также обеспечить стабильность температуры.Во-вторых, система контроля температуры высоко- и низкотемпературной испытательной камеры обладает высокой точностью и стабильностью. Система контроля температуры является основной частью всей испытательной камеры, которая обеспечивает точный контроль и поддержание стабильности внутренней температуры испытательной камеры посредством регулировки и контроля системы охлаждения и системы отопления. Текущая основная система контроля температуры в основном включает в себя систему ПИД-регулирования и интеллектуальную систему управления. Среди них система ПИД-управления обладает характеристиками высокой точности и высокой стабильности, что позволяет осуществлять точный контроль температуры внутри испытательной камеры и подходит для испытательной среды с высокими требованиями к точности контроля температуры. Интеллектуальная система управления имеет более интеллектуальные характеристики и может осуществлять автоматический контроль и регулировку внутренней температуры испытательной камеры с помощью алгоритма самообучения и технологии анализа больших данных, которая подходит для случаев с относительно широкими требованиями к испытательной среде. .Таким образом, технические характеристики высоко- и низкотемпературной испытательной камеры в основном отражаются в ее системе охлаждения и системе контроля температуры. Компрессионная холодильная система и система ПИД-регулирования обладают характеристиками высокой холодопроизводительности, высокой скорости охлаждения, высокой точности контроля температуры и высокой стабильности, которые подходят для испытательных условий, требующих высокой точности и стабильности контроля температуры. В будущем, с развитием технологий искусственного интеллекта и Интернета вещей, система управления высоко- и низкотемпературной испытательной камерой будет продолжать развиваться и совершенствоваться в направлении интеллекта, автоматизации и дистанционного управления, чтобы лучше удовлетворять рыночный спрос. .
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.