Схема испытаний водородного топливного элемента при моделировании окружающей среды
В настоящее время модель экономического развития, основанная на потреблении невозобновляемой энергии на основе угля, нефти и природного газа, привела к все более заметному загрязнению окружающей среды и парниковому эффекту. Для достижения устойчивого развития человечества установлены гармоничные отношения между человеком и природой. Развитие устойчивой зеленой энергетики стало предметом большой озабоченности во всем мире.
Будучи экологически чистой энергией, которая может хранить энергию отходов и способствовать переходу от традиционной энергии ископаемого топлива к зеленой энергии, водородная энергия имеет плотность энергии (140 МДж/кг), которая в 3 раза выше, чем у нефти и в 4,5 раза выше, чем у угля, и считается подрывное технологическое направление будущей энергетической революции. Водородный топливный элемент является ключевым носителем для преобразования энергии водорода в электрическую энергию. После того, как была предложена цель углеродной нейтральности и углеродного пика «двойной углерод», она привлекла новое внимание в фундаментальных исследованиях и промышленном применении.
Камера экологических испытаний водородных топливных элементов Lab Companion соответствует: блоку и модулю топливных элементов: 1 Вт ~ 8 кВт, двигателю топливных элементов: 30 кВт ~ 150 кВт Испытание при холодном запуске при низкой температуре: -40 ~ 0 ℃ Испытание при хранении при низкой температуре: -40 ~ 0 ℃ Высокая Тест хранения температуры: 0 ~ 100 ℃.
Внедрение камеры экологических испытаний водородных топливных элементов
Продукт имеет функциональную модульную конструкцию, взрывозащищенный и антистатический, а также соответствует соответствующим стандартам испытаний. Продукт обладает характеристиками высокой надежности и комплексным предупреждением о безопасности, что подходит для испытаний системы реактора и двигателя на топливных элементах. Применимая мощность до 150 кВт, система топливных элементов, испытание на низкую температуру (хранение, запуск, производительность), испытание на высокую температуру (хранение, запуск, производительность), испытание на влажную жару (высокая температура и влажность).
Детали безопасности:
1. Взрывозащищенная камера: записывает в режиме реального времени полную тестовую ситуацию в коробке, легко оптимизируется или корректируется во времени.
2. УФ-детектор пламени: высокоскоростной, точный и интеллектуальный детектор пожара, точная идентификация сигналов пламени.
3. Аварийное выпускное отверстие для воздуха: выпустите токсичный горючий газ из коробки, чтобы обеспечить безопасность испытания.
4. Система обнаружения газа и сигнализации: интеллектуальная и быстрая идентификация горючего газа, автоматически генерирует сигналы тревоги.
5. Холодный блок с двойным параллельным однополюсным винтовым механизмом: он обладает характеристиками функции классификации, большой мощности, небольшой занимаемой площади и так далее.
6. Система предварительного охлаждения газа: быстро контролирует требуемую температуру газа для обеспечения условий холодного запуска.
7. Испытательный стенд: испытательный стенд из нержавеющей стали, оснащенный дополнительной системой водяного охлаждения.
Проект испытаний системы топливных элементов
Проект испытаний системы топливных элементов
Испытание двигателя на топливных элементах на герметичность
Качество энергосистемы
Объем аккумуляторной батареи
Обнаружение сопротивления изоляции
Начало характеристического теста
Испытание номинальной мощности при запуске
Устойчивый характеристический тест
Проверка характеристик номинальной мощности
Пиковая характеристика мощности
Тест характеристик динамического отклика
Тест на адаптацию к высоким температурам
Испытание производительности системы двигателя на топливных элементах
Тест на устойчивость к вибрации
Тест на адаптацию к низким температурам
Стартовый тест (низкая температура)
Тест производительности выработки электроэнергии
Тест выключения
Испытание на хранение при низкой температуре
Процедуры запуска и эксплуатации при низкой температуре
/
/
Объекты испытаний реакторов и модулей
Объекты испытаний реакторов и модулей
Плановый осмотр
Испытание на утечку газа
Тест нормальной работы
Разрешить испытание рабочего давления
Опрессовка системы охлаждения
Тест на распределение газа
Испытания на ударостойкость и вибрацию
Испытание на электрическую перегрузку
Испытание диэлектрической прочности
Проверка перепада давления
Тест на концентрацию горючего газа
Испытание на избыточное давление
Испытание на утечку водорода
Тест цикла замораживания/оттаивания
Испытание на хранение при высокой температуре
Испытание на герметичность
Тест на отсутствие топлива
Тест на дефицит кислорода/окислителя
Испытание на короткое замыкание
Тест на отсутствие охлаждения/нарушение охлаждения
Тест системы мониторинга проникновения
Наземные испытания
Начало теста
Тест производительности выработки электроэнергии
Тест выключения
Испытание на хранение при низкой температуре
Тест запуска при низкой температуре
Применимые стандарты продукта:
GB/T 10592-2008 Технические условия испытательной камеры при высоких и низких температурах
GB/T 10586-2006 Технические условия камеры для испытания на влажность
ГБ/T31467.3-2015
ГБ/Т31485-2015
ГБ/T2423.1-2208
ГБ/Т2423.2-2008
ГБ/Т2423.3-2006
ГБ/Т2523.4-2008
Стандарт испытаний IEC 61646 для тонкопленочных солнечных фотоэлектрических модулейПосредством диагностических измерений, электрических измерений, испытаний на облучение, испытаний на воздействие окружающей среды, механических испытаний пять типов испытаний и режимов проверки подтверждают требования к подтверждению конструкции и утверждению формы тонкопленочной солнечной энергии, а также подтверждают, что модуль может работать в обычных климатических условиях. требуется спецификацией в течение длительного времени.МЭК 61646-10.1 Процедура визуального контроляЦель: Проверить модуль на наличие визуальных дефектов.Характеристики при STC в соответствии со стандартными условиями испытаний IEC 61646-10.2.Цель: Используя естественный свет или симулятор класса А, в стандартных условиях испытаний (температура батареи: 25±2℃, интенсивность излучения: 1000 Втм^-2, стандартное распределение солнечного излучения в соответствии со стандартом IEC891), проверить электрические характеристики модуля с нагрузкой. изменять.МЭК 61646-10.3 Испытание изоляцииЦель: проверить наличие хорошей изоляции между токоведущими частями и корпусом модуля.МЭК 61646-10.4 Измерение температурных коэффициентовЦель: проверить текущий температурный коэффициент и температурный коэффициент напряжения при тестировании модуля. Измеренный температурный коэффициент действителен только для облучения, использованного в тесте. Для линейных модулей это справедливо в пределах ±30% этого облучения. Эта процедура дополняет стандарт IEC891, который определяет измерение этих коэффициентов для отдельных ячеек в репрезентативной партии. Температурный коэффициент тонкопленочного модуля солнечных элементов зависит от процесса термообработки используемого модуля. При использовании температурного коэффициента следует указывать условия термического испытания и результаты облучения процесса.МЭК 61646-10.5 Измерение номинальной рабочей температуры элемента (NOCT)Цель: проверить NOCT модуля.IEC 61646-10.6 Производительность в NOCTЦель: Когда номинальная рабочая температура батареи и интенсивность излучения составляют 800 Втм^-2, при стандартном распределении излучения солнечного спектра электрические характеристики модуля меняются в зависимости от нагрузки.IEC 61646-10.7 Характеристики при низкой освещенностиЦель: Определить электрические характеристики модулей под нагрузкой при естественном освещении или симуляторе класса А при 25 ℃ и 200 Втм^-2 (измерения с помощью соответствующей эталонной ячейки).IEC 61646-10.8 Испытание на открытом воздухеЦель: провести неизвестную оценку устойчивости модуля к воздействию внешних условий и показать любые эффекты деградации, которые не удалось обнаружить с помощью эксперимента или испытания.IEC 61646-10.9 Испытание горячих точекЦель: Определить способность модуля противостоять тепловым воздействиям, таким как старение упаковочного материала, растрескивание аккумулятора, нарушение внутреннего соединения, локальное затенение или появление пятен на краях, которые могут стать причиной таких дефектов.МЭК 61646-10.10 УФ-тест (УФ-тест)Цель: Чтобы подтвердить способность модуля противостоять ультрафиолетовому (УФ) излучению, новый УФ-тест описан в IEC1345, и при необходимости модуль следует подвергнуть воздействию света перед выполнением этого теста.IEC61646-10.11 Испытание на термоциклирование (термоциклирование)Цель: Подтвердить способность модуля противостоять термической неоднородности, усталостным и другим нагрузкам, возникающим вследствие многократных изменений температуры. Перед проведением этого испытания модуль должен быть отожжен. [Предварительное ВАХ-тест] относится к тесту после отжига. Будьте осторожны, не подвергайте модуль воздействию света перед окончательным ВАХ-тестом.Требования к тесту:а. Приборы для контроля электрической непрерывности внутри каждого модуля на протяжении всего процесса испытаний.б. Контролируйте целостность изоляции между одним из утопленных концов каждого модуля и рамой или опорной рамой.в. Записывайте температуру модуля на протяжении всего испытания и отслеживайте любые возможные обрывы цепи или замыкания на землю (во время испытания не должно быть периодических обрывов цепи или замыканий на землю).d. Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.IEC 61646-10.12 Испытание цикла замораживания при влажностиЦель: Проверить стойкость модуля к влиянию последующей минусовой температуры при высокой температуре и влажности, это не испытание на термоудар, перед получением испытания модуль должен быть отожжен и подвергнут термоциклическому испытанию, [ [Предварительное ВАХ-тест] относится к термическому циклу после испытания. Будьте осторожны, чтобы не подвергать модуль воздействию света перед окончательным ВАХ-тестом.Требования к тесту:а. Приборы для контроля электрической непрерывности внутри каждого модуля на протяжении всего процесса испытаний.б. Контролируйте целостность изоляции между одним из утопленных концов каждого модуля и рамой или опорной рамой.в. Записывайте температуру модуля на протяжении всего испытания и отслеживайте любые возможные обрывы цепи или обрывы заземления (во время испытания не должно быть периодических обрывов цепи или обрывов заземления).д. Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.IEC 61646-10.13 Испытание на влажное тепло (Влажное тепло)Цель: проверить способность модуля противостоять длительному проникновению влаги.Требования к испытаниям: Сопротивление изоляции должно соответствовать тем же требованиям, что и при первоначальном измерении.МЭК 61646-10.14 Прочность выводовЦель: определить, выдерживает ли крепление между выводным концом и выводным концом к корпусу модуля силу при нормальной установке и эксплуатации.IEC 61646-10.15 Испытание на скручиваниеЦель: Обнаружить возможные проблемы, вызванные установкой модуля на неидеальной конструкции.IEC 61646-10.16 Испытание механической нагрузкойЦель: Целью данного испытания является определение способности модуля противостоять ветру, снегу, льду или статическим нагрузкам.IEC 61646-10.17 Испытание градомЦель: Проверить ударостойкость модуля к граду.IEC 61646-10.18 Испытание на светопроницаемостьЦель: стабилизировать электрические свойства тонкопленочных модулей путем моделирования солнечного излучения.IEC 61646-10.19 Испытания на отжиг (отжиг)Цель: перед проверочным испытанием пленочный модуль отжигается. Если не отжиг, нагрев во время последующей процедуры испытания может маскировать затухание, вызванное другими причинами.IEC 61646-10.20 Испытание тока утечки во влажном состоянииЦель: оценить изоляцию модуля во влажных условиях эксплуатации и убедиться, что влага от дождя, тумана, росы или тающего снега не попадает в токоведущие части цепи модуля, что может вызвать коррозию, нарушение заземления или угрозу безопасности.
Сравнение испытательной камеры с естественной конвекцией, испытательной камеры с постоянной температурой и влажностью и высокотемпературной печиИнструкции:Домашнее развлекательное аудиовизуальное оборудование и автомобильная электроника являются одними из ключевых продуктов многих производителей, и продукт в процессе разработки должен моделировать адаптируемость продукта к температуре и электронным характеристикам при различных температурах. Однако при использовании обычной печи или термовлажностной камеры для имитации температурной среды либо в печи, либо в термовлажностной камере имеется испытательная зона, оборудованная циркуляционным вентилятором, поэтому в испытательной зоне возникнут проблемы со скоростью ветра.Во время испытания однородность температуры поддерживается вращением циркуляционного вентилятора. Хотя однородность температуры в испытательной зоне может быть достигнута за счет циркуляции ветра, тепло испытуемого продукта также будет отводиться циркулирующим воздухом, что будет существенно не соответствовать реальному продукту в условиях безветренной эксплуатации. (например, в гостиной, в помещении).Из-за циркуляции ветра разница температур испытуемого продукта составит около 10 ℃. Чтобы имитировать фактическое использование условий окружающей среды, многие люди неправильно понимают, что только испытательная камера может производить температуру (например, духовка, камера с постоянной температурой и влажностью), может проводить испытания с естественной конвекцией. На самом деле это не так. В спецификации указаны особые требования к скорости ветра, а также требуется тестовая среда без скорости ветра. С помощью испытательного оборудования и программного обеспечения для естественной конвекции создается температурная среда без прохождения через вентилятор (естественная конвекция), и выполняется интеграционный тест для определения температуры тестируемого продукта. Это решение можно использовать для тестирования бытовой электроники или тестирования реальной температуры окружающей среды в ограниченном пространстве (например, больших ЖК-телевизоров, кабин автомобилей, автомобильной электроники, ноутбуков, настольных компьютеров, игровых консолей, стереосистем и т. д.).Спецификация испытания на непринудительную циркуляцию воздуха: IEC-68-2-2, GB2423.2, GB2423.2-89 3.31. Разница между испытательной средой с циркуляцией ветра или без нее и испытанием испытываемой продукции:Инструкции:Если испытуемый продукт не находится под напряжением, испытуемый продукт не будет нагреваться сам, его источник тепла только поглощает тепло воздуха в испытательной печи, а если испытуемый продукт находится под напряжением и нагревается, циркуляция ветра в испытательная печь отберет тепло у испытуемого изделия. С каждым метром увеличения скорости ветра его тепло будет уменьшаться примерно на 10%. Предположим, необходимо смоделировать температурные характеристики электронных изделий в помещении без кондиционирования воздуха. Если для имитации 35 °C используется печь или увлажнитель с постоянной температурой, хотя температуру окружающей среды можно контролировать в пределах 35 °C с помощью электрического нагрева и компрессора, циркуляция ветра в печи и испытательной камере для нагрева и увлажнения будет отводить тепло. продукта, подлежащего тестированию. Таким образом, фактическая температура испытуемого продукта ниже, чем температура в реальном безветренном состоянии. Необходимо использовать испытательную камеру с естественной конвекцией без скорости ветра, чтобы эффективно имитировать реальную безветренную среду (в помещении, кабина автомобиля без запуска, шасси прибора, водонепроницаемая камера на открытом воздухе... Такая среда).Сравнительная таблица скорости ветра и испытываемого продукта IC:Описание: Когда скорость окружающего ветра выше, температура поверхности IC также отнимает тепло поверхности IC из-за ветрового цикла, что приводит к увеличению скорости ветра и снижению температуры.
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.