баннер
Дом

блог

блог

  • How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain? How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain?
    Sep 10, 2025
    Lab Companion UV weathering test chamber is a professional device used to simulate and evaluate the resistance performance of materials under ultraviolet radiation and corresponding climatic conditions for testing outdoor products. Its core function lies in simulating the impact of ultraviolet rays on materials in the natural environment through artificially controlled ultraviolet irradiation, temperature and humidity changes, thereby conducting comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of technology and the continuous improvement of requirements for material performance, the application of UV weathering test chambers has become increasingly widespread, covering multiple fields such as plastics, coatings, and textiles. The Q8 system independently developed by Lab can simulate the damage caused by sunlight and rain, and complies with multiple international certification standards. It can be programmed to conduct continuous ultraviolet light and rain weather resistance tests 24 hours a day and 7 days a week. It only takes a few days or weeks to reproduce the damage that occurs outdoors in months or even years, including various phenomena such as color change and powdering. Meanwhile, the Q8/UV2/UV3 are equipped with a standard ultraviolet light detection system, which precisely controls the light intensity. Four sets of UV intensity sensors automatically adjust the energy of the lamp tubes based on the aging state to make compensation, significantly reducing the experimental time and ensuring the reproducibility of the system. To more realistically simulate the effects of rainwater scouring and cooling, the ultraviolet test chamber is also equipped with a spray system. The Q8/UV3 model is equipped with 12 sets of water spray devices to simulate mechanical corrosion caused by rainwater erosion. When the sample is heated to a high temperature by an ultraviolet lamp, it is sprayed with cold water to generate intense thermal contraction stress, simulating a sudden downpour in summer. The scouring effect of water flow can simulate the erosion of coatings, paints and other surfaces by rainwater, washing away the aged and decomposed substances on the surface and exposing new material layers to continue aging. A typical test loop is: Under the set irradiance and high temperature, 4 hours of ultraviolet light is used to simulate daytime sun exposure. With the lights off and high humidity maintained, 4 hours of condensation at night is simulated. During this process, short sprays can be inserted regularly to simulate rainfall. By intensifying and cycling these key environmental factors, the ultraviolet light test chamber can reproduce within days or weeks the aging damage that materials would take months or even years outdoors, thus being used for product quality control and durability assessment. However, this test is an accelerated experiment, and its results are correlated with those of real outdoor exposure, rather than being completely equivalent. Different materials and testing standards will select different types of lamp tubes, irradiance, temperatures, and cycle periods to obtain the most relevant prediction results.
    ЧИТАТЬ ДАЛЕЕ
  • How to Choose the Appropriate Cooling Method for Test Chambers?
    Sep 09, 2025
    Air cooling and water cooling are two mainstream heat dissipation methods in refrigeration equipment. The most fundamental difference between them lies in the different media they use to discharge the heat generated by the system into the external environment: air cooling relies on air, while water cooling relies on water. This core difference has given rise to numerous distinctions among them in terms of installation, usage, cost and applicable scenarios.   1. Air-cooled system The working principle of an air-cooling system is to force air flow through a fan, blowing it over its core heat dissipation component - the finned condenser, thereby carrying away the heat in the condenser and dissipating it into the surrounding air. Its installation is very simple and flexible. The equipment can operate simply by connecting to the power supply and does not require additional supporting facilities, thus having the lowest requirements for site renovation. This cooling performance is significantly affected by the ambient temperature. In hot summers or high-temperature environments with poor ventilation, due to the reduced temperature difference between the air and the condenser, the heat dissipation efficiency will drop markedly, resulting in a decline in the equipment's cooling capacity and an increase in operational energy consumption. Moreover, it will be accompanied by considerable fan noise during operation. Its initial investment is usually low, and daily maintenance is relatively simple. The main task is to regularly clean the dust on the condenser fins to ensure smooth ventilation. The main operating cost is electricity consumption. Air-cooled systems are highly suitable for small and medium-sized equipment, areas with abundant electricity but scarce water resources or inconvenient water access, laboratories with controllable environmental temperatures, as well as projects with limited budgets or those that prefer a simple and quick installation process.   2. Water-cooled system The working principle of a water-cooling system is to use circulating water flowing through a dedicated water-cooled condenser to absorb and carry away the heat of the system. The heated water flow is usually transported to the outdoor cooling tower for cooling and then recycled again. Its installation is complex and requires a complete set of external water systems, including cooling towers, water pumps, water pipe networks and water treatment devices. This not only fixes the installation location of the equipment, but also places high demands on site planning and infrastructure. The heat dissipation performance of the system is very stable and is basically not affected by changes in the external environmental temperature. Meanwhile, the operating noise near the equipment body is relatively low. Its initial investment is high. Besides electricity consumption, there are also other costs such as continuous water resource consumption during daily operation. The maintenance work is also more professional and complex, and it is necessary to prevent scale formation, corrosion and microbial growth. Water-cooled systems are mainly suitable for large, high-power industrial-grade equipment, workshops with high ambient temperatures or poor ventilation conditions, as well as situations where extremely high temperature stability and refrigeration efficiency are required.   Choosing between air cooling and water cooling is not about judging their absolute superiority or inferiority, but about finding the solution that best suits one's specific conditions. Decisions should be based on the following considerations: Firstly, large high-power equipment usually prefers water cooling to achieve stable performance. At the same time, the geographical climate of the laboratory (whether it is hot), water supply conditions, installation space and ventilation conditions need to be evaluated. Secondly, if a relatively low initial investment is valued, air cooling is a suitable choice. If the focus is on long-term operational energy efficiency and stability, and one does not mind the relatively high initial construction cost, then water cooling has more advantages. Finally, it is necessary to consider whether one has the professional ability to conduct regular maintenance on complex water systems.
    ЧИТАТЬ ДАЛЕЕ
  • Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration
    Sep 06, 2025
    1.Compression The low-temperature and low-pressure gaseous refrigerant flows out of the evaporator and is sucked in by the compressor. The compressor does work on this part of the gas (consuming electrical energy) and compresses it violently. When the refrigerant turns into high-temperature and high-pressure superheated vapor, the temperature of the vapor is much higher than the ambient temperature, creating conditions for heat release to the outside. 2. Condensation The high-temperature and high-pressure refrigerant vapor enters the condenser (usually a finned tube heat exchanger composed of copper tubes and aluminum fins). The fan forces the ambient air to blow over the condenser fins. Subsequently, the refrigerant vapor releases heat to the flowing air in the condenser. Due to cooling, it gradually condenses from a gaseous state into a medium-temperature and high-pressure liquid. At this point, the heat is transferred from the refrigeration system to the outdoor environment. 3. Expansion The medium-temperature and high-pressure liquid refrigerant flows through a narrow channel through the throttling device, which serves to throttle and reduce pressure, similar to blocking the opening of a water pipe with a finger. When the pressure of the refrigerant drops suddenly, the temperature also drops sharply, turning into a low-temperature and low-pressure gas-liquid two-phase mixture (mist). 4. Evaporation The low-temperature and low-pressure gas-liquid mixture enters the evaporator, and another fan circulates the air inside the box through the cold evaporator fins. The refrigerant liquid absorbs the heat of the air flowing through the fins in the evaporator, rapidly evaporates and vaporizes, and reverts to a low-temperature and low-pressure gas. Due to the absorption of heat, the temperature of the air flowing through the evaporator drops significantly, thereby achieving the cooling of the test chamber.   Subsequently, this low-temperature and low-pressure gas is drawn into the compressor again, initiating the next cycle. In this way, the cycle repeats itself without end. The refrigeration system continuously "moves" the heat inside the box to the outside and dissipates the heat into the atmosphere through the fan.
    ЧИТАТЬ ДАЛЕЕ
  • High-temperature Oven Maintenance Guide High-temperature Oven Maintenance Guide
    Sep 05, 2025
    1. Daily Maintenance First, clean the interior of the box to remove any residual contaminants from the test (such as dust and sample debris) to prevent them from corroding the inner liner or contaminating subsequent test samples. After the box has completely cooled down, wipe the inner liner, shelves and inner walls with a dry soft cloth. Second, clean the exterior of the box to prevent dust from blocking the ventilation openings and affecting heat dissipation. Especially around the ventilation openings, make sure there is no dust accumulation. Thirdly, check whether the sealing strip of the box door is flat, free of cracks and deformation. Aging or damage to the sealing strip can lead to heat leakage and a decrease in temperature uniformity. Fourth, empty the chamber: Emptying the chamber after use can prevent irrelevant items from being stored in the box for a long time, which may cause contamination or accidents.   2.Regular Maintenance Please be sure to cut off the power supply before cleaning the heating element! Wait for the equipment to cool down completely. Open the rear cover plate and gently remove the dust on the surface of the electric heating tube and the air duct with a vacuum cleaner or a soft brush. Check and clean the fan/impeller. Dust accumulation on the fan can cause dynamic balance imbalance, seriously affecting the uniformity of temperature. Therefore, after the power is cut off, it is necessary to check whether there is any abnormal noise from the fan motor bearings and use a vacuum cleaner to clean the accumulated dust on the fan blades.  Electrical components shall be inspected by professional equipment administrators for any loose, charred or rusted marks on the power lines, circuit breakers, contactors and other terminal blocks. Tighten the loose terminals and replace the damaged parts to ensure the safety and reliability of the electrical connection. The accuracy of the temperature sensor can directly determine the success or failure of the test. It is recommended that every six months or once a year, a standard thermometer that has undergone metrological calibration be used to conduct multi-point comparison calibration of the working temperature range of the equipment. If deviations are detected, parameter corrections or sensor replacements should be made in the control system. Clean the humidity system. If your device has a humidity function, you also need to clean the humidification water pan regularly, replace the wet cloth to prevent the growth of scale and algae, and use deionized water or purified water to reduce scale.   3. Long-term Maintenance after discontinuation First, thoroughly clean the inside and outside of the box, and then completely cover the equipment with a dust cover. Secondly, it is recommended to power on and run the equipment for half an hour to one hour without load once a month. This can remove the moisture inside the box, keep the electrical components active, prevent them from being damaged by moisture, and lubricate the mechanical parts. Finally, during non-power-on periods, it is recommended to completely cut off the main power supply to ensure safety and save standby power consumption.   Please always keep in mind that safety comes first in the above operations. By implementing a systematic maintenance plan, you can extend the service life of the high-temperature oven, ensure the accuracy and repeatability of the test data, and reduce the frequency of equipment failures and maintenance costs.
    ЧИТАТЬ ДАЛЕЕ
  • Lab Companion Vacuum Oven Working Principle Lab Companion Vacuum Oven Working Principle
    Sep 02, 2025
    Lab Companion vacuum oven is a precision device that dries materials under low-pressure conditions. Its working principle is based on a core scientific principle: in a vacuum state, the boiling point of a liquid will significantly decrease. Its working process can be divided into three key links:   1. Vacuum creation: By continuously extracting air from the oven chamber through a vacuum pump set, the internal environment is reduced to a level far below atmospheric pressure (typically up to 10Pa or even higher vacuum degrees). This move achieves two purposes: First, it greatly reduces the oxygen content in the cavity, preventing the material from oxidizing during the heating process; The second is to create conditions for the core physical process: low-temperature boiling. 2. Heating provides energy: At the same time as the vacuum environment is established, the heating system (usually using electric heating wires or heating plates) starts to work, providing thermal energy for the materials inside the chamber. Due to the extremely low internal pressure, the boiling points of the moisture or other solvents contained in the material drop sharply. For instance, at a vacuum degree of -0.085MPa, the boiling point of water can be reduced to approximately 45℃. This means that the material does not need to be heated to the conventional 100℃, and the internal moisture can vaporize rapidly at a lower temperature. 3. Steam removal: The water vapor or other solvent vapors produced by vaporization will be released from the surface and interior of the material. Due to the pressure difference within the cavity, these vapors will rapidly diffuse and be continuously drawn away by the vacuum pump, then discharged into the external environment. This process is ongoing continuously, ensuring the maintenance of a dry environment and preventing steam from re-condensing within the cavity, thereby driving the drying reaction to proceed continuously and efficiently towards dehydration.   The "low-temperature and high-efficiency drying" feature of vacuum ovens makes them widely used in the fields of pharmaceuticals, chemicals, electronics, food, and materials science, especially suitable for processing precious, sensitive or difficult-to-dry materials by conventional methods.
    ЧИТАТЬ ДАЛЕЕ
  • Применение высоко- и низкотемпературных испытательных камер при исследовании новых энергетических материалов Применение высоко- и низкотемпературных испытательных камер при исследовании новых энергетических материалов
    Aug 30, 2025
    1. Литий-ионные аккумуляторы: Испытания при высоких и низких температурах проводятся на всех этапах НИОКР литий-ионных аккумуляторов — от материалов и ячеек до модулей. 2. Уровень материала: Оценка основных физических и химических свойств базовых материалов, таких как материалы положительных и отрицательных электродов, электролиты и сепараторы, при различных температурах. Например, проверка риска литирования анодных материалов при низких температурах или исследование скорости термической усадки (MSDS) сепараторов при высоких температурах. 3. Уровень элемента: Имитация зимних условий в холодном климате (например, от -40 ℃ до -20 ℃), тестирование запуска при низких температурах, разрядной ёмкости и скорости тока аккумулятора, а также предоставление данных для улучшения его характеристик при низких температурах. Циклические испытания заряда и разряда проводятся при высоких температурах (например, 45 ℃ и 60 ℃) для ускорения процесса старения и прогнозирования срока службы и скорости сохранения ёмкости аккумулятора. 4. Топливные элементы: К топливным элементам с протонообменной мембраной (PEMFC) предъявляются чрезвычайно строгие требования к управлению водой и теплом. Возможность холодного запуска является ключевым техническим препятствием для коммерциализации топливных элементов. Испытательная камера имитирует условия ниже точки замерзания (например, -30 °C) для проверки возможности успешного запуска системы после замерзания и изучения механического повреждения каталитического слоя и протонообменной мембраны кристаллами льда. 5. Фотоэлектрические материалы: Солнечные панели должны служить на открытом воздухе более 25 лет, выдерживая суровые испытания днем ​​и ночью, а также все четыре сезона. Моделируя перепад температур днем ​​и ночью (например, 200 циклов от -40 ℃ до 85 ℃), можно проверить термическую усталость соединительной ленты аккумуляторных элементов, старение и пожелтение инкапсуляционных материалов (EVA/POE), а также надежность соединения различных ламинированных материалов, чтобы предотвратить расслоение и разрушение.   Современные испытательные камеры для высоких и низких температур Это уже не просто камеры для измерения температуры, а интеллектуальные испытательные платформы, объединяющие множество функций. Усовершенствованная испытательная камера оснащена смотровыми окнами и тестовыми отверстиями, что позволяет исследователям наблюдать за образцами в режиме реального времени при изменении температуры.
    ЧИТАТЬ ДАЛЕЕ
  • Система испытаний на старение и функциональность при высоких и низких температурах с водяным охлаждением OVEN-256-10W
    Aug 20, 2025
    ОВЕН-256-10Вт Это высокоплотная тестовая система, разработанная для удовлетворения строгих требований к тестированию производительности твердотельных накопителей NVMe. Она способна одновременно тестировать до 256 накопителей. Система работает в диапазоне температур от -10°C до 85°C и поддерживает новейший интерфейс PCIe Gen5 x4, а также спецификацию протокола NVMe Ver2.0. Каждый тестовый слот обеспечивает независимое управление напряжением питания твердотельных накопителей, включая диапазон напряжения от 0 до 14,5 В. Система, основанная на продуманной платформе для тестирования SSD в процессе производства, обеспечивает комплексную поддержку пилотных испытаний в НИОКР, включая EVT, DVT и PVT, а также испытаний качества и надежности массового производства, таких как MP, ORT и ODT. Удобное управление и высокая гибкость настройки значительно повышают как эффективность производства, так и качество конечной продукции при производстве твердотельных накопителей. Особенности продуктаДиапазон регулирования температуры: от -10°C до 85°C;Скорость изменения температуры: 1°С в минуту;Поддерживает PCIe Gen5 x4;Напряжение питания каждого тестового порта можно контролировать с помощью скриптового программирования, диапазон регулировки составляет 0,6–14,5 В, точность управления — 1 мВ;Совместим с новейшим протоколом NVMe Ver2.0 и поддерживает определяемые пользователем команды NVMe;Обширная библиотека скриптов и мощная система анализа базы данных;Программное обеспечение LTWolf поддерживает дополнительные пользовательские функции в соответствии с требованиями клиента;Полная интеграция с MES-системами заказчика с возможностью настройки под системы управления производственными данными;Конструкция защиты брандмауэра обеспечивает полную изоляцию между испытательными схемами и тестируемыми устройствами (DUT);Комплексные и проверенные алгоритмы тестирования, включая EVT, DVT, RDT, TVM и другие.
    ЧИТАТЬ ДАЛЕЕ
  • Стандарты поставки сопутствующих лабораторных товаров
    Aug 07, 2025
    Основные соображения по передаче оборудования для обеспечения его надлежащей эксплуатации на месте:1. Монтаж и наладка оборудованияНаша компания осуществляет контроль за транспортировкой и подключением оборудования к электросети, обеспечивая его корректную работу на объекте заказчика. Все монтажные работы строго соответствуют стандартным критериям приемки. камеры для испытаний на воздействие окружающей средыМы регулярно проводим сторонние проверки, чтобы гарантировать постоянное соблюдение отраслевых стандартов. Если заказчику потребуется отчёт о проверке после приёмки, мы можем организовать проведение испытаний на месте аккредитованной сторонней организацией. 2. Система технического обучения клиентов2.1 Базовое обучение эксплуатацииОбучение охватывает процедуры запуска/остановки оборудования, настройку программы испытаний и протоколы планового технического обслуживания. В зависимости от отрасли, в которой работает пользователь (например, сторонние испытательные организации, автопроизводители), программа обучения адаптируется к конкретным эксплуатационным сценариям. 2.2 Расширенное обучение техническому обслуживаниюЭта программа направлена на развитие у пользователей навыков поиска и устранения неисправностей, включая диагностику неисправностей системы влажности. испытательные камеры температуры и влажности. Обучение включает в себя основные процедуры замены компонентов и меры предосторожности для создания независимой системы компетентности в области технического обслуживания. 3. Протокол службы технической поддержки3.1 Механизм реагирования на чрезвычайные ситуацииСтандартизированный процесс реагирования на неисправности обеспечивает начало технической поддержки в течение 2 часов с момента получения запроса. Распространенные неисправности устраняются в течение 48 часов (для удаленных регионов обсуждаются альтернативные решения). 3.2 Удаленная техническая поддержкаОснащение профессиональной системой удаленной диагностики, видеосвязью в реальном времени или доступом к специальному программному обеспечению позволяет быстро идентифицировать неисправности. 4. Поставка запасных частей и обеспечение технического обслуживания4.1 План управления запасными частямиДля улучшения послепродажного обслуживания мы создаём специализированные склады запасных частей для крупных покупателей и постоянных клиентов, что позволяет быстро реагировать на потребности в обслуживании. Каждому клиенту присваивается отдельный профиль для оптимизации распределения ресурсов.Приоритетные каналы поставок зарезервированы для ключевых партнеров (например, CRCC, CETC), что гарантирует ускоренную доставку запасных частей для минимизации простоев оборудования. 4.2 Политика технического обслуживанияВ течение гарантийного срока предоставляется бесплатный ремонт неисправностей, не связанных с человеческим фактором. Услуги по послегарантийному обслуживанию имеют прозрачную систему ценообразования, с подробными планами ремонта и сметой, предоставляемыми заранее.Наша компания располагает профессиональной командой специалистов по послепродажному обслуживанию и стремится постоянно повышать уровень технической компетентности наших специалистов. Мы рассчитываем, что в ближайшем будущем сможем оказывать поддержку на месте для иностранных клиентов.
    ЧИТАТЬ ДАЛЕЕ
  • Применение температурных расходомеров Применение температурных расходомеров
    Jul 09, 2025
    Температурный расходомер – это прецизионный прибор для измерения расхода и температуры газа, широко применяемый в системах мониторинга окружающей среды, системах кондиционирования воздуха, промышленном производстве и смежных областях. Его основной принцип заключается в регистрации изменений температуры, вызванных потоком газа, для точного расчета скорости и объема воздушного потока, что обеспечивает пользователям точные данные. Ключевыми особенностями прибора являются высокая точность и быстрое реагирование. Как правило, оснащенный передовыми датчиками, он может быстро регистрировать мельчайшие изменения расхода и обеспечивать обратную связь в режиме реального времени. Точность измерений остается исключительной даже в сложных условиях окружающей среды, что особенно важно для промышленных применений, требующих строгого контроля расхода и температуры воздуха. Кроме того, температурные расходомеры относительно просты в эксплуатации – для получения необходимых данных пользователю требуется лишь базовая настройка. Благодаря удобной конструкции, с ними легко работать как профессионалам, так и обычным пользователям. Многие современные модели также оснащены цифровыми дисплеями с интуитивно понятным интерфейсом, что позволяет быстро отслеживать текущее состояние прибора и повышает удобство его использования. Прибор демонстрирует превосходную стабильность, поддерживая стабильные результаты измерений в течение длительного времени без существенного дрейфа, что гарантирует надежность данных. Благодаря постоянному технологическому прогрессу многие устройства теперь оснащаются функциями хранения и передачи данных, что позволяет пользователям просматривать и анализировать архивные данные после испытаний для принятия обоснованных решений. В заключение, термоанемометр стал незаменимым инструментом в различных отраслях промышленности благодаря своей высокой точности, быстрому отклику, удобству использования и превосходной стабильности. В повседневной жизни и профессиональной деятельности освоение этого прибора не только повышает эффективность работы, но и оказывает важнейшую поддержку научным исследованиям и инженерным решениям. Будучи важнейшей измерительной технологией в современной науке, он играет ключевую роль в технологическом прогрессе.
    ЧИТАТЬ ДАЛЕЕ
  • Выбор места установки испытательной камеры для быстрого изменения температуры Выбор места установки испытательной камеры для быстрого изменения температуры
    Jun 27, 2025
    Выбор места установки испытательной камеры быстрого изменения температуры:Расстояние от соседней стены позволяет в полной мере реализовать функции и характеристики испытательной камеры для испытаний на воздействие окружающей среды. Следует выбрать место с длительной температурой 15 ~ 45 °C и относительной влажностью воздуха более 86%.Рабочая температура в месте установки не должна существенно изменяться. Его следует устанавливать на выравнивающей поверхности (используйте уровень для определения уровня на дороге во время установки).Его следует устанавливать в месте, защищенном от воздействия солнечных лучей. Его следует устанавливать в месте с хорошей естественной вентиляцией.Его следует устанавливать в местах, где отсутствуют легковоспламеняющиеся материалы, взрывоопасные продукты и источники тепла высокой температуры.Его следует устанавливать в месте с меньшим содержанием пыли.Устанавливайте его как можно ближе к импульсному источнику питания системы электропитания.
    ЧИТАТЬ ДАЛЕЕ
  • Что делать, если возникли проблемы с испытательной камерой для высоких и низких температур? Что делать, если возникли проблемы с испытательной камерой для высоких и низких температур?
    Jun 23, 2025
    Камера для испытаний на высокие и низкие температуры могут возникнуть различные проблемы в процессе использования, ниже приведен краткий обзор потенциальных неисправностей и их причин с разных точек зрения:1. Сбой основной системыТемпература вышла из-под контроляПричина: Разбалансировка параметров ПИД-регулятора, температура окружающей среды превышает расчетный диапазон оборудования, многозонные температурные помехи.Случай: В цехе со специальными условиями эксплуатации высокая внешняя температура приводит к перегрузке холодильной системы, что приводит к температурному дрейфу.Влажность ненормальнаяПричина: плохое качество воды для увлажнения приводит к образованию накипи и засорению форсунок, выходу из строя пьезоэлектрического листа ультразвукового увлажнителя и неполной регенерации осушающего агента.Особое явление: во время испытания на высокую влажность происходит обратная конденсация, в результате чего фактическая влажность в коробке оказывается ниже заданного значения.2. Механические и структурные проблемыПоток воздуха неорганизованПроизводительность: В зоне образца имеется градиент температуры более 3℃.Основная причина: изготовленная на заказ стойка для образцов изменила первоначальную конструкцию воздуховода, а накопление грязи на лопатках центробежного вентилятора привело к нарушению динамического равновесия. нарушение герметичностиНовая неисправность: магнитная сила электромагнитного уплотнения двери уменьшается при низкой температуре, а силиконовая уплотнительная лента становится хрупкой и трескается после -70℃.3. Электрическая и управляющая системаОтказ интеллектуального управленияУровень программного обеспечения: После обновления прошивки возникает ошибка настройки мертвой зоны температуры и переполнение исторических данных приводит к сбою программы.Аппаратный уровень: выход из строя твердотельного реле SSR приводит к постоянному нагреву, а связь по шине подвергается электромагнитным помехам инвертора.Уязвимости защиты безопасностиСкрытые опасности: синхронный отказ тройного реле температурной защиты и ложная тревога, вызванная истечением срока калибровки детектора хладагента.4. Проблемы особых условий трудаСпецифический температурный шокПроблема: быстрое изменение температуры в испарителе при температуре от -40 ℃ до +150 ℃, растрескивание сварного шва, разница коэффициентов теплового расширения, приводящая к разрушению уплотнения смотрового окна.Длительное затухание работыСнижение производительности: после 2000 часов непрерывной работы износ пластины клапана компрессора приводит к снижению холодопроизводительности на 15% и дрейфу значения сопротивления керамической нагревательной трубки.5. Воздействие на окружающую среду и техническое обслуживаниеАдаптация инфраструктурыСлучай: Колебания мощности PTC-нагревателя, вызванные колебаниями напряжения электропитания и гидроударом системы охлаждающей воды, повредили пластинчатый теплообменник.Слепые зоны профилактического обслуживанияУрок: Игнорирование положительного давления в коробке приводит к попаданию воды в подшипниковую камеру, а также к образованию биопленки и закупориванию трубы отвода конденсата.6. Болевые точки новых технологийНовое применение хладагентаПроблемы: проблемы совместимости системного масла после замены R404A на R448A, а также проблемы герметизации под высоким давлением докритических холодильных систем на CO₂.Риски интеграции IoTОшибка: злонамеренная атака на протокол удаленного управления приводит к несанкционированному вмешательству в программу и сбою облачного хранилища, что приводит к потере цепочки тестовых доказательств.Стратегические рекомендацииИнтеллектуальная диагностика: настройте анализатор вибрации для прогнозирования выхода из строя подшипника компрессора и используйте инфракрасный тепловизор для регулярного сканирования точек электрических соединений.Надежная конструкция: ключевые компоненты, такие как испаритель, изготовлены из нержавеющей стали SUS316L для повышения коррозионной стойкости, а в систему управления добавлены резервные модули контроля температуры.Инновации в обслуживании: внедрение динамического плана обслуживания на основе часов работы и создание ежегодной системы проверки чистоты хладагента.Решения этих проблем необходимо анализировать с учетом конкретной модели оборудования, условий эксплуатации и истории обслуживания. Рекомендуется создать механизм совместного обслуживания, включающий производителя оборудования, сторонние испытательные организации и технические группы пользователей. Для ключевых тестовых объектов рекомендуется настроить систему горячего резерва с двумя машинами для обеспечения непрерывности тестирования.
    ЧИТАТЬ ДАЛЕЕ
  • Каковы стандарты доставки Lab Companion? Каковы стандарты доставки Lab Companion?
    Jun 23, 2025
    (1) Установка и ввод в эксплуатацию оборудованияОбслуживание на месте: технический персонал бесплатно доставит товар и выполнит механическую сборку, электромонтаж и наладку. Параметры наладки должны соответствовать температуре и влажности, уровню солевого тумана и другим показателям, указанным в техническом соглашении заказчика.Критерии приёмки: необходимо предоставить отчёт об измерениях, выполненных независимой организацией, и не прошедшее проверку оборудование должно быть возвращено или заменено напрямую. Например, испытательный стенд для испытаний на воздействие дождя должен пройти 100% приёмку.(2) Система обучения клиентовОбучение эксплуатации: охватывает запуск и остановку оборудования, настройку программ и ежедневное обслуживание, адаптировано для различных пользовательских сценариев, таких как учреждения по контролю качества и автомобильные предприятия.Углубленное обучение техническому обслуживанию: включая диагностику неисправностей (например, устранение неисправностей системы увлажнения в испытательной камере при высоких и низких температурах и влажности) и замену запасных частей для улучшения способности клиентов к самостоятельному техническому обслуживанию.(3) Техническая поддержка и реагированиеМгновенное реагирование: реагируем на заявку на ремонт в течение 15 минут и устраняем стандартные неисправности в течение 48 часов (согласовываем сроки с удаленными районами).Удаленная диагностика: с помощью видеоруководства или программного обеспечения для удаленного доступа можно быстро обнаружить проблему (например, аномальную концентрацию пыли в камере для испытаний песка).(4) Поставка запасных частей и техническое обслуживаниеСоставьте план поставок запасных частей, отдайте приоритет поставкам быстроизнашивающихся деталей от кооперативных подразделений (таких как Китайский центр инспекции и сертификации железных дорог, Китайская группа электронных технологий) и сократите время простоя.В течение гарантийного срока неручные повреждения не подлежат оплате, а по истечении гарантийного срока предоставляются платные услуги с прозрачной системой ценообразования.
    ЧИТАТЬ ДАЛЕЕ
1 2 3 4 5 6 7 8 9 10 19 20
В общей сложности 20страницы

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

связаться с нами