баннер
Дом

Термальная велосипедная камера

Термальная велосипедная камера

  • Thermal Cycling Test(TC) & Thermal Shock Test(TS) Thermal Cycling Test(TC) & Thermal Shock Test(TS)
    Jan 07, 2024
    Thermal Cycling Test(TC) & Thermal Shock Test(TS) Thermal Cycling Test(TC): In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.   A series of high and low temperature cycling tests are done on the temperature change at the temperature variation rate of 5~15 degrees per minute, which is not a real simulation of the actual situation. Its purpose is to apply stress to the test piece, accelerate the aging factor of the test piece, so that the test piece may cause damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.   Common ones are: Electrical function of the product The lubricant deteriorates and loses lubrication Loss of mechanical strength, resulting in cracks and cracks The deterioration of the material causes chemical action   Scope of application: Module/system product environment simulation test Module/System Product Strife test PCB/PCBA/ Solder Joint Accelerated Stress Test (ALT/AST)...   Thermal Shock Test(TS): In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.   High and low temperature shock tests under extremely harsh conditions on rapid temperature changes at a temperature variability of 40 degrees per minute are not truly simulated. Its purpose is to apply severe stress to the test piece to accelerate the aging factor of the test piece, so that the test piece may cause potential damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.   Common ones are: Electrical function of the product The product structure is damaged or the strength is reduced Tin cracking of components The deterioration of the material causes chemical action Seal damage   Machine specifications: Temperature range: -60 ° C to +150 ° C Recovery time: < 5 minutes Inside dimension: 370*350*330mm (D×W×H)   Scope of application: PCB reliability acceleration test Accelerated life test of vehicle electric module LED parts accelerated test...   Effects of temperature changes on products: The coating layer of components falls off, the potting materials and sealing compounds crack, even the sealing shell cracks, and the filling materials leak, which causes the electrical performance of components to decline. Products composed of different materials, when the temperature changes, the product is not evenly heated, resulting in product deformation, sealing products cracking, glass or glassware and optics broken; The large temperature difference makes the surface of the product condense or frost at low temperature, evaporates or melts at high temperature, and the result of such repeated action leads to and accelerates the corrosion of the product.   Environmental effects of temperature change: Broken glass and optical equipment. The movable part is stuck or loose. Structure creates separation. Electrical changes. Electrical or mechanical failure due to rapid condensation or freezing. Fracture in a granular or striated manner. Different shrinkage or expansion characteristics of different materials. The component is deformed or broken. Cracks in surface coatings. Air leak in the containment compartment.
    ЧИТАТЬ ДАЛЕЕ
  • Lab Companion – Испытательная камера для быстрого температурного цикла Lab Companion – Испытательная камера для быстрого температурного цикла
    Jan 21, 2024
    Lab Companion – Испытательная камера для быстрого температурного циклаВведение Lab CompanionИмея более чем 20-летний опыт работы, Лабораторный компаньон является производителем климатических камер мирового класса и опытным поставщиком испытательных систем и оборудования «под ключ». Все наши камеры основаны на репутации Lab Companion, обеспечивающей долгий срок службы и исключительную надежность. В области проектирования, производства и обслуживания Lab Companion создала систему управления качеством, соответствующую международному стандарту системы качества ISO 9001:2008. Программа калибровки оборудования Lab Companion аккредитована в соответствии с международным стандартом ISO 17025 и американским национальным стандартом ANSI/NCSL-Z-540-1 от A2LA. A2LA является полноправным членом и подписантом Международного сотрудничества по аккредитации лабораторий (ILAC), Азиатско-Тихоокеанского региона по аккредитации лабораторий (APLAC) и Европейского сотрудничества по аккредитации (EA). Камеры для экологических испытаний Lab Companion серии SE предлагают значительно улучшенную систему воздушного потока, которая обеспечивает лучшие градиенты и улучшенную скорость изменения температуры продукта. В этих камерах используется флагманский программатор/контроллер Thermotron 8800, оснащенный 12,1-дюймовым плоским дисплеем с высоким разрешением и сенсорным пользовательским интерфейсом, расширенными возможностями построения графиков, регистрации данных, редактирования, доступа к экранной справке и долгосрочного хранения данных на жестком диске.Мы не только предлагаем продукцию высочайшего качества, но и обеспечиваем постоянную поддержку, призванную обеспечить вам бесперебойную работу еще долгое время после первоначальной продажи. Мы обеспечиваем местное обслуживание напрямую с завода с обширным запасом запчастей, которые могут вам понадобиться. ПроизводительностьДиапазон температур: от -70°C до +180°C.Производительность: при загрузке алюминия весом 23 кг (IEC60068-3-5) скорость подъема от +85°C до -40°C составляет 15℃/мин; скорость охлаждения от -40°C до +85°C также составляет 15℃/мин.Контроль температуры: ± 1°C. Температура по сухому термометру от контрольной точки после стабилизации на контрольном датчике.Производительность основана на условиях окружающей среды 75°F (23,9°C) и относительной влажности 50%.Характеристики охлаждения/нагрева основаны на измерениях на датчике управления в потоке приточного воздуха.КонструкцияИнтерьерНемагнитная нержавеющая сталь серии 300 с высоким содержанием никеля.Внутренние швы гелиарной сваркой для герметизации вкладыша.Углы и швы спроектированы так, чтобы обеспечить расширение и сжатие при экстремальных температурах.Слив конденсата расположен в полу облицовки и под камерой кондиционирования.Основание камеры полностью сварное.Неосадочная изоляция из стекловолокна «Ultra-Lite».Одна регулируемая внутренняя полка из нержавеющей стали входит в стандартную комплектацию.ЭкстерьерОбработанная листовая сталь, обработанная штамповкойМеталлические крышки доступа обеспечивают легкое открывание дверей к электрическим компонентам.Финишное покрытие лаком на водной основе, сухим на воздухе, распыляется на очищенную и загрунтованную поверхность.Легкосъемные распашные дверцы для обслуживания холодильной системы.Одно отверстие диаметром 12,5 см с внутренним сварным швом и съемной изолирующей заглушкой, установленное в аксессуарах правой боковой стены на распашной двери для облегчения доступа.ФункцииКамера Operation четко отображает полезную информацию во время выполненияGraphing Screen предлагает расширенные возможности, улучшенное программирование и отчетность.Статус системы отображает важные параметры холодильной системы.Программа Entry упрощает загрузку, просмотр и редактирование профилей.Мастера быстрой настройки облегчают вход в профильВсплывающие таблицы холодильного оборудования для удобной справкиTherm-Alarm® обеспечивает защиту от превышения и понижения температуры.Экран журнала активности отображает полную историю оборудованияВеб-сервер обеспечивает доступ к оборудованию через Интернет через Ethernet.Удобная всплывающая клавиатура позволяет быстро и легко вводить данные.Включает:- Четыре порта USB: два внешних и два внутренних.- Ethernet- РС-232Технические характеристики1-4 независимо программируемых каналаТочность измерения: типичная 0,25% от диапазона измерения.Выбираемая температурная шкала °C или °FЦветной плоский сенсорный дисплей с диагональю 12,1 дюйма (30 см)Разрешение: 0,1°C, 0,1% относительной влажности, 0,01 для других линейных применений.Часы реального времени в комплектеЧастота выборки: выборка переменной процесса осуществляется каждые 0,1 секунды.Диапазон пропорциональности: программируется от 1,0° до 300°.Метод управления: цифровойИнтервалы: НеограниченноРазрешение интервала: от 1 секунды до 99 часов, 59 минут с разрешением 1 секунда.- РС-232- 10+ лет хранения данных- Контроль температуры продукта- Плата реле событийРежимы работы: автоматический или ручной.Хранение программ: НеограниченноеПрограммные циклы:- До 64 петель на программуЦиклы могут повторяться до 9999 раз.- Допускается до 64 вложенных циклов в каждом
    ЧИТАТЬ ДАЛЕЕ
  • Тест на стабильность лекарств Тест на стабильность лекарств
    Mar 12, 2024
    Тест на стабильность лекарств Эффективность и безопасность лекарств привлекли большое внимание, и это также вопрос средств к существованию, которому страна и правительство придают большое значение. Стабильность лекарств будет влиять на эффективность и безопасность. Для обеспечения качества лекарственных средств и тары для хранения следует проводить испытания на стабильность для определения срока их действия и состояния хранения. Тест на стабильность в основном изучает, влияют ли на качество лекарств такие факторы окружающей среды, как температура, влажность и свет, и меняется ли оно со временем и корреляция между ними, а также изучает кривую деградации лекарств, в соответствии с которой предполагается эффективный период. обеспечить эффективность и безопасность лекарственных средств при их применении. В этой статье собрана стандартная информация и методы тестирования, необходимые для различных тестов стабильности, для справки клиентов. Во-первых, критерии тестирования стабильности лекарственного средства. Условия хранения препаратов:   Условия хранения (Примечание 2) Долгосрочный эксперимент 25℃±2℃/60%±5% относительной влажности или 30℃±2℃/65%±5% относительной влажности Ускоренный тест 40℃±2℃/75%±5% относительной влажности Средний тест (Примечание 1) 30℃±2℃/65%±5% относительной влажности Примечание 1. Если условия долгосрочного испытания установлены на уровне 30 ℃ ± 2 ℃/65 % ± 5 % относительной влажности, промежуточный тест не проводится; Если условия длительного хранения составляют 25℃±2℃/60% ±5% относительной влажности и при ускоренном тесте наблюдаются значительные изменения, то следует добавить средний тест. И их следует оценивать по критерию «значительного изменения». Примечание 2: Герметичные непроницаемые контейнеры, такие как стеклянные ампулы, могут быть защищены от условий влажности. Если не указано иное, все испытания должны проводиться в соответствии с планом испытаний на стабильность в промежуточных испытаниях. Данные ускоренных испытаний должны быть доступны в течение шести месяцев. Минимальная продолжительность теста на стабильность составляет 12 месяцев для среднего теста и долгосрочного теста.   Хранить в холодильнике:   Условия хранения Долгосрочный эксперимент 5℃±3℃ Ускоренный тест 25℃±2℃/60%±5% относительной влажности   Хранится в морозильной камере:   Условия хранения Долгосрочный эксперимент -20℃±5℃ Ускоренный тест 5℃±3℃ Если продукт, содержащий воду или растворители, которые могут терять растворитель, упакован в полупроницаемый контейнер, оценку стабильности следует проводить при низкой относительной влажности в течение длительного периода времени или среднее испытание в течение 12 месяцев, а также ускоренное испытание продолжительностью 6 месяцев с целью доказать, что препарат, помещенный в полупроницаемый контейнер, может выдерживать среду с низкой относительной влажностью.   Содержащие воду или растворители   Условия хранения Долгосрочный эксперимент 25℃±2℃/40%±5% относительной влажности или 30℃±2℃/35%±5% относительной влажности Ускоренный тест 40℃±2℃; относительная влажность ≤25% Средний тест (Примечание 1) 30℃±2℃/35% относительной влажности±5% относительной влажности Примечание 1: Если условия долгосрочного испытания составляют 30 ℃ ± 2 ℃ / 35 % ± 5 % относительной влажности, среднего испытания не существует.   Расчет относительной скорости потери воды при постоянной температуре 40 ℃ выглядит следующим образом: Замещенная относительная влажность (А) Контроль относительной влажности (R) Коэффициент скорости потерь воды ([1-R]/[1-A]) 60% относительной влажности 25% относительной влажности 1,9 60% относительной влажности 40% относительной влажности 1,5 65% относительной влажности 35% относительной влажности 1,9 75% относительной влажности 25% относительной влажности 3.0 Иллюстрация: Для водных препаратов, помещенных в полупроницаемые контейнеры, скорость потери воды при относительной влажности 25% в три раза выше, чем при относительной влажности 75%.   Во-вторых, решения по стабильности лекарств. Общие критерии испытаний на стабильность лекарственного средства (Источник: Управление по санитарному надзору за качеством пищевых продуктов и медикаментов, Министерство здравоохранения и социального обеспечения) Элемент Условия хранения Долгосрочный эксперимент 25°C/60% относительной влажности Ускоренный тест 40°C/75% относительной влажности Средний тест 30°C/65% относительной влажности   (1) Испытание в широком температурном диапазоне Элемент Условия хранения Долгосрочный эксперимент Условия низкой или минусовой температуры Ускоренный тест Комнатная температура и влажность или низкие температурные условия   (2) Испытательное оборудование 1. Камера для испытаний с постоянной температурой и влажностью 2. Камера для испытания стабильности лекарственного средства.
    ЧИТАТЬ ДАЛЕЕ
  • Испытание надежности тепловых трубок Испытание надежности тепловых трубок
    Mar 29, 2024
    Испытание надежности тепловых трубокТехнология тепловых трубок представляет собой элемент теплопередачи, называемый «тепловой трубкой», изобретенный Г.М. марсоход Национальной лаборатории Лос-Аламоса в 1963 году, который в полной мере использует принцип теплопроводности и свойства быстрой теплопередачи холодильной среды и быстро передает тепло нагреваемого объекта источнику тепла через тепловую трубку. Его теплопроводность превышает теплопроводность любого известного металла. Технология тепловых трубок широко используется в аэрокосмической, военной и других отраслях промышленности, поскольку она была внедрена в промышленность по производству радиаторов, что заставило людей изменить идею конструкции традиционного радиатора и избавиться от единого режима рассеивания тепла, который просто основан на Двигатель с большим объемом воздуха для лучшего рассеивания тепла. Использование технологии тепловых трубок делает радиатор, даже если использование низкоскоростного двигателя с малым объемом воздуха также может дать удовлетворительные результаты, так что проблема шума, связанная с теплом воздушного охлаждения, была хорошо решена, открывая новый мир в теплоотдача промышленности.Условия испытания надежности тепловой трубки:Высокотемпературный стресс-тест: 150 ℃/24 часа.Тест на циклическое изменение температуры:120 ℃ (10 минут) ←→-30 ℃ (10 минут), линейное изменение: 0,5 ℃, 10 циклов 125 ℃ (60 минут) ←→-40 ℃ (60 минут), линейное изменение: 2,75 ℃, 10 цикловИспытание на термический удар:120℃(2мин) ←→-30℃(2мин), 250 циклов125℃(5мин) ←→-40℃(5мин), 250 циклов100 ℃ (5 минут) ←→-50 ℃ (5 минут), 2000 циклов (проверьте один раз после 200 циклов)Испытание на высокую температуру и высокую влажность:85℃/85% относительной влажности/1000 часовТест на ускоренное старение:110℃/85% относительной влажности/264 часаДругие объекты испытаний тепловых трубок:Испытание на солевой туман, испытание на прочность (струйная очистка), испытание на скорость утечки, испытание на вибрацию, испытание на случайную вибрацию, испытание на механический удар, испытание на горение гелия, испытание на производительность, испытание в аэродинамической трубе
    ЧИТАТЬ ДАЛЕЕ
  • Испытание на естественную конвекцию (без испытания на температуру циркуляции ветра) и технические характеристики Испытание на естественную конвекцию (без испытания на температуру циркуляции ветра) и технические характеристики
    Oct 18, 2024
    Испытание на естественную конвекцию (без испытания на температуру циркуляции ветра) и технические характеристикиДомашнее развлекательное аудиовизуальное оборудование и автомобильная электроника являются одними из ключевых продуктов многих производителей, и продукт в процессе разработки должен моделировать адаптируемость продукта к температуре и электронным характеристикам при различных температурах. Однако, когда для имитации температурной среды используется обычная печь или испытательная камера с постоянной температурой и влажностью, и печь, и испытательная камера с постоянной температурой и влажностью имеют испытательную зону, оборудованную циркуляционным вентилятором, поэтому в помещении могут возникнуть проблемы со скоростью ветра. тестовая площадка. Во время испытания однородность температуры поддерживается вращением циркуляционного вентилятора. Хотя однородность температуры в испытательной зоне может быть достигнута за счет циркуляции ветра, тепло испытуемого продукта также будет отводиться циркулирующим воздухом, что будет существенно не соответствовать реальному продукту в условиях безветренной эксплуатации. (например, в гостиной, в помещении). Из-за циркуляции ветра разница температур испытываемого продукта составит около 10 ° C, чтобы имитировать фактическое использование условий окружающей среды, многие люди неправильно поймут, что только испытательная машина может производить температуру (например, : печь, испытательная камера с постоянной температурой и влажностью) может проводить испытания на естественную конвекцию, на самом деле это не так. В спецификации указаны особые требования к скорости ветра, а также требуется тестовая среда без скорости ветра. С помощью испытательного оборудования с естественной конвекцией (без испытания на принудительную циркуляцию ветра) создается температурная среда без вентилятора (испытание с естественной конвекцией), а затем проводится интеграционное испытание для определения температуры испытуемого продукта. Это решение может применяться для реальных испытаний на температуру окружающей среды бытовых электронных изделий или ограниченных пространств (таких как: большой ЖК-телевизор, кабина автомобиля, автомобильная электроника, ноутбук, настольный компьютер, игровая консоль, стереосистема и т. д.).Разница в испытательной среде с циркуляцией ветра или без нее для испытания испытываемого продукта:Если испытуемый продукт не находится под напряжением, испытуемый продукт не будет нагреваться сам, его источник тепла только поглощает тепло воздуха в испытательной печи, а если испытуемый продукт находится под напряжением и нагревается, циркуляция ветра в испытательная печь отберет тепло у испытуемого продукта. С каждым метром увеличения скорости ветра его тепло будет уменьшаться примерно на 10%. Предположим, что для моделирования температурных характеристик электронных изделий в помещении без кондиционирования воздуха используется духовка или испытательная камера с постоянной температурой и влажностью для имитации 35 °C, хотя температуру окружающей среды в зоне испытаний можно контролировать в пределах 35 °C. Благодаря электрическому нагреву и замораживанию циркуляция ветра в печи и испытательная камера с постоянной температурой и влажностью отводят тепло от испытуемого продукта, в результате чего фактическая температура испытуемого продукта ниже, чем температура в реальном состоянии. без ветра. Поэтому необходимо использовать испытательную машину с естественной конвекцией без скорости ветра, чтобы эффективно имитировать реальную безветренную среду (например, закрытую кабину автомобиля без запуска, корпус прибора, водонепроницаемую коробку на открытом воздухе... Такая среда).Внутренняя среда без циркуляции ветра и солнечного лучистого теплового излучения:С помощью тестера естественной конвекции смоделируйте фактическое использование клиентом реальной конвекционной среды кондиционирования воздуха, анализ горячих точек и характеристики рассеивания тепла при оценке продукта, например, ЖК-телевизор на фотографии, чтобы не только учитывать собственное рассеивание тепла, но и Для оценки воздействия теплового излучения за окном тепловое излучение продукта может производить дополнительное лучистое тепло выше 35°C.Сравнительная таблица скорости ветра и испытуемого продукта IC:Когда скорость окружающего ветра выше, температура поверхности IC также отнимает тепло поверхности IC из-за ветрового цикла, что приводит к более высокой скорости ветра и более низкой температуре. Когда скорость ветра равна 0, температура равна 100 ℃, но когда скорость ветра достигает 5 м/с, температура поверхности IC ниже 80 ℃.Испытание на нефорсированную циркуляцию воздуха:В соответствии со спецификациями IEC60068-2-2, в процессе испытаний при высоких температурах необходимо выполнять условия испытаний без принудительной циркуляции воздуха, процесс испытаний необходимо поддерживать в условиях безветренной циркуляции, а также Высокотемпературное испытание проводится в испытательной печи, поэтому испытание не может проводиться в испытательной камере или печи с постоянной температурой и влажностью, а тестер с естественной конвекцией можно использовать для имитации условий свободного воздуха.Описание условий испытаний:Спецификация испытаний на непринудительную циркуляцию воздуха: МЭК-68-2-2, ГБ2423.2, ГБ2423.2-89 3.3.1Испытание на нефорсированную циркуляцию воздуха: Условия испытания ненасильственной циркуляции воздуха могут хорошо имитировать условия свободного воздуха.ГБ2423.2-89 3.1.1:При измерении в условиях открытого воздуха, когда температура испытуемого образца стабильна, температура самой горячей точки на поверхности более чем на 5 ℃ выше, чем температура окружающего большого устройства, это испытательный образец по рассеиванию тепла, в противном случае это испытательный образец без тепловыделения.GB2423.2-8 10 (Испытание на градиент температуры образца для испытания на рассеивание тепла):Предусмотрена стандартная процедура испытаний для определения способности термоэлектронных изделий (включая компоненты, оборудование и другие изделия) адаптироваться к использованию при высоких температурах.Требования к тесту:а. Испытательная машина без принудительной циркуляции воздуха (оснащена вентилятором или воздуходувкой)б. Одиночный тестовый образецв. Скорость нагрева не превышает 1 ℃/мин.д. После того, как температура испытательного образца достигает стабильности, на испытательный образец подается питание или выполняется домашняя электрическая нагрузка для определения электрических характеристик.Особенности испытательной камеры с естественной конвекцией:1. Можно оценить тепловую мощность испытываемого продукта после включения питания, чтобы обеспечить наилучшую равномерность распределения;2. В сочетании с цифровым сборщиком данных эффективно измеряет соответствующую информацию о температуре продукта, подлежащего тестированию, для синхронного многодорожечного анализа;3. Запись информации о более чем 20 рельсах (синхронная запись распределения температуры внутри испытательной печи, многодорожечная температура испытуемого продукта, средняя температура... и т. д.).4. Контроллер может напрямую отображать многодорожечное значение температуры и кривую записи; Многодорожечные тестовые кривые можно сохранять на USB-накопителе через контроллер;5. Программное обеспечение для анализа кривой может интуитивно отображать многодорожечную температурную кривую и выводить отчеты EXCEL, а контроллер имеет три вида отображения [сложный английский];6. Выбор датчика температуры термопары нескольких типов (B, E, J, K, N, R, S, T);7. Масштабируемость для увеличения скорости нагрева и планирования стабильности управления.
    ЧИТАТЬ ДАЛЕЕ
  • Надежность керамической подложки Надежность керамической подложки
    Oct 18, 2024
    Надежность керамической подложкиКерамическая печатная плата (керамическая подложка) представляет собой специальную технологическую пластину, на которой медная фольга непосредственно приклеивается к поверхности (одинарной или двойной) керамической подложки из оксида алюминия (Al2O3) или нитрида алюминия (AlN) при высокой температуре. Ультратонкая композитная подложка обладает превосходными электроизоляционными характеристиками, высокой теплопроводностью, отличной пайкой и высокой прочностью адгезии, а также может быть выгравирована на различных графических объектах, таких как печатные платы, с большой пропускной способностью по току. Таким образом, керамическая подложка стала основным материалом для технологии создания мощных электронных схем и технологий межсоединений, которая подходит для продуктов с высокой калорийностью (светодиоды высокой яркости, солнечная энергия), а ее превосходная устойчивость к атмосферным воздействиям может применяться для суровые внешние условия.Основные продукты применения: Несущая плата для светодиодов высокой мощности, светодиодные фонари, светодиодные уличные фонари, солнечный инверторОсобенности керамической подложки:Структура: отличная механическая прочность, низкая деформация, коэффициент теплового расширения, близкий к кремниевой пластине (нитрид алюминия), высокая твердость, хорошая технологичность, высокая точность размеров.Климат: подходит для условий высокой температуры и влажности, высокая теплопроводность, хорошая термостойкость, устойчивость к коррозии и износу, устойчивость к ультрафиолетовому излучению и пожелтению.Химический состав: Не содержит свинца, нетоксичен, хорошая химическая стабильность.Электрические характеристики: высокое сопротивление изоляции, легкая металлизация, схемная графика и сильная адгезия.Рынок: Обилие материалов (глина, алюминий), простота изготовления, низкая цена.Сравнение тепловых характеристик материала печатной платы (проводимость):Стекловолоконная плита (традиционная печатная плата): 0,5 Вт/мК, алюминиевая подложка: 1–2,2 Вт/мК, керамическая подложка: 24 [оксид алюминия] ~ 170 [нитрид алюминия] Вт/мККоэффициент теплопередачи материала (единица Вт/мК):Смола: 0,5, оксид алюминия: 20-40, карбид кремния: 160, алюминий: 170, нитрид алюминия: 220, медь: 380, алмаз: 600Классификация процесса керамической подложки:В зависимости от линии процесс керамической подложки подразделяется на: тонкопленочный, толстопленочный, низкотемпературный многослойный керамический совместный обжиг (LTCC).Тонкопленочный процесс (DPC): точный контроль конструкции схемы компонента (ширина линии и толщина пленки).Процесс толстой пленки (Толстая пленка): для обеспечения отвода тепла и погодных условий.Низкотемпературная многослойная керамика совместного обжига (HTCC): использование стеклокерамики с низкой температурой спекания, низкой температурой плавления, высокой проводимостью драгоценных металлов, характеристики совместного обжига, многослойная керамическая подложка) и сборка.Низкотемпературная многослойная керамика совместного обжига (LTCC): устанавливайте несколько керамических подложек и встраивайте пассивные компоненты и другие микросхемы.Процесс тонкопленочной керамической подложки:· Предварительная обработка → напыление → фотостойкое покрытие → экспонирование → линейное покрытие → удаление пленки· Ламинирование → горячее прессование → обезжиривание → обжиг подложки → формирование контурного рисунка → контурный обжиг· Ламинирование → поверхностный печатный рисунок → горячее прессование → обезжиривание → совместный обжиг· Печатная графика → ламинирование → горячее прессование → обезжиривание → совместный обжигУсловия испытаний на надежность керамической подложки:Керамическая подложка при высокой температуре: 85 ℃Работа при низкой температуре керамической подложки: -40 ℃.Керамическая подложка холодного и термического удара:1. 155 ℃ (15 минут) ←→-55 ℃ (15 минут)/300 циклов2. 85 ℃ (30 мин), пожалуйста - - 40 ℃ (30 мин)/РАМП: 10 мин (12,5 ℃/мин)/5 цикловПриклеивание керамической подложки: Приклейте к поверхности платы лентой 3M#600. Через 30 секунд быстро оторвите под углом 90° к поверхности доски.Эксперимент с красными чернилами на керамической подложке: кипятить в течение часа, непроницаемый.Испытательное оборудование:1. Камера для испытаний на влажную жару при высокой и низкой температуре.2. Трехкамерная газовая камера для испытаний на холодный и тепловой удар. 
    ЧИТАТЬ ДАЛЕЕ
  • Тест надежности планшета Тест надежности планшета
    Oct 16, 2024
    Тест надежности планшетаПланшетный компьютер, также известный как планшетный персональный компьютер (Tablet PC), представляет собой небольшой портативный персональный компьютер, в котором в качестве основного устройства ввода используется сенсорный экран. Это электронный продукт с высокой мобильностью, и его можно увидеть повсюду в жизни (например, на станциях ожидания, в поездах, скоростных поездах, кафе, ресторанах, конференц-залах, пригородах и т. д.). Люди носят только простую защиту пальто или даже не носят ее, чтобы облегчить использование, конструкция уменьшает размер, так что его можно положить непосредственно в карман или сумку, рюкзак, но планшетный компьютер в процессе перемещения также будет испытывать множество проблем. физические изменения окружающей среды (такие как температура, влажность, вибрация, удары, экструзия и т. д.). И т. д.) и естественный ущерб (например, ультрафиолетовый свет, солнечный свет, пыль, соленые брызги, капли воды... Это также может привести к искусственным непреднамеренным травмам или ненормальной работе и неправильной эксплуатации, а также стать причиной сбоев и повреждений (например, бытовая химия, потливость рук, падение, слишком частое вставление и удаление клемм, трение в карманах, хрустальные гвозди... Это сократит срок службы планшетного компьютера, чтобы обеспечить надежность продукта и продлить срок службы, чтобы улучшить его, мы должны носить с собой из ряда проектов испытаний экологической надежности на планшетном компьютере, следующие соответствующие тесты для вашей справки.Описание проекта экологических испытаний:Моделировать различные суровые условия и оценки надежности, используемые планшетными компьютерами, чтобы проверить, соответствует ли их производительность требованиям; В основном он включает в себя работу при высоких и низких температурах, хранение при высоких и низких температурах, температуру и конденсацию, температурный цикл и удар, комбинированное испытание на влажность и тепло, ультрафиолет, солнечный свет, капли, пыль, солевой туман и другие испытания.Диапазон рабочих температур: 0℃ ~ 35℃/5% ~ 95% относительной влажности.Диапазон температур хранения: -10℃ ~ 50℃/10% ~ 90% относительной влажности.Испытание на низкую температуру эксплуатации: -10 ℃/2 часа/работа при мощностиИспытание на высокую температуру при эксплуатации: 40 ℃/8 часов/все работает.Испытание при низкой температуре хранения: -20 ℃/96 часов/выключениеИспытание на высокую температуру хранения: 60 ℃/96 часов/выключениеВысокотемпературное испытание хранения транспортного средства: 85 ℃/96 часов/выключение.Температурный шок: -40℃(30мин) ←→80℃(30мин)/10цикловИспытание на влажную жару: 40℃/95% относительной влажности/48 часов/режим ожиданияИспытание на горячий и влажный цикл: 40℃/95% относительной влажности/1 час → линейное изменение: 1 ℃/мин → -10 ℃/1 час, 20 циклов, режим ожиданияИспытание на влажную жару: 40℃/95% относительной влажности/48 часов/режим ожиданияИспытание на горячий и влажный цикл: 40℃/95% относительной влажности/1 час → линейное изменение: 1 ℃/мин → -10 ℃/1 час, 20 циклов, режим ожиданияИспытание на устойчивость к атмосферным воздействиям:Моделирование самых суровых природных условий, испытание на солнечное тепловое воздействие, каждый цикл 24 часа, 8 часов непрерывного воздействия, 16 часов на сохранение темноты, количество излучения каждого цикла 8,96 кВтч/м2, всего 10 циклов.Испытание солевым туманом:5% раствор хлорида натрия/Температура воды 35°C/PH 6,5~7,2/24 часа/ Выключение → Протрите корпус чистой водой →55°C/0,5 часа → Функциональная проверка: через 2 часа, после 40/80% относительной влажности/168 часов.Испытание на капание: в соответствии с IEC60529, в соответствии с классом водонепроницаемости IPX2, может предотвратить попадание капель воды, падающих под углом менее 15 градусов, в планшетный компьютер и их повреждение. Условия испытания: скорость потока воды 3 мм/мин, 2,5 мин в каждом положении, контрольная точка: после испытания, через 24 часа, режим ожидания в течение 1 недели.Тест на пыль:Согласно IEC60529, в соответствии с классом пыли IP5X, не может полностью предотвратить попадание пыли, но не влияет на устройство, должно быть действие и anquan, в дополнение к планшетным компьютерам в настоящее время существует множество персональных мобильных портативных продуктов 3C, обычно используемых стандартов пыли. , такие как: мобильные телефоны, цифровые фотоаппараты, MP3, MP4... Подождем.Условия:Образец пыли 110 мм/3 ~ 8 ч/тест на динамическую работуПосле испытания с помощью микроскопа определяют, попадут ли частицы пыли во внутреннее пространство планшета.Испытание на химическое окрашивание:Подтвердите внешние компоненты, относящиеся к планшету, подтвердите химическую стойкость бытовой химии, химикатов: солнцезащитного крема, губной помады, крема для рук, средства от комаров, растительного масла (салатное масло, подсолнечное масло, оливковое масло... и т. д.), время испытания. составляет 24 часа, проверьте цвет, блеск, гладкость поверхности и т. д., а также проверьте наличие пузырей или трещин.Механическое испытание:Проверьте прочность механической конструкции планшетного компьютера и износостойкость основных компонентов; В основном включает в себя испытание на вибрацию, испытание на падение, испытание на удар, испытание на пробку и испытание на износ... и т. д.Тест на падение: Высота 130 см, свободное падение на гладкую поверхность почвы, каждая сторона падала 7 раз, 2 стороны всего 14 раз, планшетный компьютер в режиме ожидания, при каждом падении проверяется функционирование тестируемого продукта.Повторное испытание на падение: высота 30 см, свободное падение на гладкую плотную поверхность толщиной 2 см, каждая сторона падала 100 раз, каждый интервал 2 с, 7 сторон всего 700 раз, каждые 20 раз проверяйте работу экспериментального продукта, планшетный компьютер в состоянии силы.Случайный тест на вибрацию: частота 30 ~ 100 Гц, 2G, осевой: три осевых. Время: 1 час в каждую сторону, всего три часа планшет находится в режиме ожидания.Испытание экрана на ударопрочность: Медный шарик массой 11ψ/5,5 г упал на центральную поверхность предмета длиной 1 м на высоте 1,8 м, а шарик из нержавеющей стали 3ψ/9 г упал на высоте 30 см.Прочность записи на экране: более 100 000 слов (ширина R0,8 мм, давление 250 г)Прочность сенсорного экрана: 1 миллион, 10 миллионов, 160 миллионов, 200 миллионов раз или более (ширина R8 мм, твердость 60°, давление 250 г, 2 раза в секунду)Тест на плоский экран: Диаметр резинового блока 8 мм, скорость давления 1,2 мм/мин, вертикальное направление 5 кг. Нажмите на окно 3 раза, каждый раз в течение 5 секунд, экран должен отображаться нормально.Испытание на плоское нажатие на переднюю часть экрана: Вся площадь контакта, направление вертикальной 25-килограммовой силы, переднее плоское нажатие с каждой стороны планшетного компьютера, в течение 10 секунд, плоское нажатие 3 раза, не должно быть никаких отклонений.Проверка подключения и снятия наушников: Вставьте наушник вертикально в отверстие для наушников, а затем вытащите его вертикально. Повторите это более 5000 раз.Проверка подключения и извлечения ввода-вывода: Планшет находится в режиме ожидания, а штекерный разъем выдернут в общей сложности более 5000 раз.Карманное испытание на трение: Имитируя карман или рюкзак из различных материалов, планшет многократно протирают в кармане 2000 раз (испытание на трение также добавляет некоторые смешанные частицы пыли, включая частицы пыли, частицы ян-травы, пух и частицы бумаги для теста на смешивание).Тест на твердость экрана: твердость выше класса 7 (ASTM D 3363, JIS 5400)Испытание на удар экрана: ударить по наиболее уязвимым сторонам и центру панели с силой более 5㎏ 
    ЧИТАТЬ ДАЛЕЕ
  • Условия температуры и влажности Условия температуры и влажности
    Oct 14, 2024
    Условия температуры и влажностиТемпература точки росы Td, содержание водяного пара в воздухе неизменно, поддерживает определенное давление, так что охлаждение воздуха достигает температуры насыщения, называемой температурой точки росы, называемой точкой росы, единица измерения выражается в ° C или ℉. На самом деле это температура, при которой водяной пар и вода находятся в равновесии. Разница между фактической температурой (t) и температурой точки росы (Td) показывает, насколько воздух насыщен. Когда t>Td, это означает, что воздух не насыщен, когда t=Td, то он насыщен, а когда t
    ЧИТАТЬ ДАЛЕЕ
  • Скрининг температурного циклического стресса (1) Скрининг температурного циклического стресса (1)
    Oct 14, 2024
    Скрининг температурного циклического стресса (1)Скрининг экологического стресса (ESS)Проверка напряжения - это использование методов ускорения и воздействия окружающей среды при расчетном пределе прочности, например: пригорание, циклическое изменение температуры, случайная вибрация, цикл включения и выключения... При ускорении напряжения возникают потенциальные дефекты в продукте [материал потенциальных деталей дефекты, дефекты конструкции, технологические дефекты, технологические дефекты], а также устраняют электронные или механические остаточные напряжения, а также устраняют паразитные конденсаторы между многослойными печатными платами, ранняя стадия смерти продукта в кривой ванны удаляется и ремонтируется заранее , чтобы продукт посредством умеренного скрининга сохранял нормальный период и период спада кривой ванны, чтобы избежать продукта в процессе использования, испытание на воздействие окружающей среды иногда приводит к сбою, что приводит к ненужным потерям. Хотя использование стресс-скрининга ESS увеличит стоимость и время, для повышения выхода продукции и уменьшения количества ремонтов есть значительный эффект, но общая стоимость будет снижена. Кроме того, доверие клиентов также будет улучшено, как правило, для электронных частей методы стресс-скрининга - это предварительное сжигание, температурный цикл, высокая температура, низкая температура, метод стресс-скрининга печатной платы - это температурный цикл, для электронной стоимости Стресс-скрининг - это: предварительное сжигание мощности, циклическое изменение температуры, случайная вибрация. Помимо самого стресс-скрининга, это этап процесса, а не испытание, скрининг составляет 100% процедуры продукта.Стресс-скрининг применимого этапа продукта: этап исследований и разработок, этап массового производства, перед поставкой (проверочный тест может проводиться на компонентах, устройствах, разъемах и других продуктах или на всей системе машины, в соответствии с различными требованиями может иметь различную проверочную нагрузку)Сравнение стресс-скрининга:а. Постоянный высокотемпературный предварительный скрининг (пригорание) - это текущий метод, широко используемый в электронной ИТ-индустрии для выявления дефектов электронных компонентов, но этот метод не подходит для проверки деталей (PCB, IC, резистор, конденсатор). Согласно статистике Число компаний в США, использующих циклический температурный режим для экранирования деталей, в пять раз больше, чем число компаний, использующих постоянный высокотемпературный предварительный обжиг для экранирования компонентов.Б. ГЖБ/ДЗ34 указывает на долю температурного цикла и случайных дефектов выбора вибрационного экрана, температура составляет около 80%, вибрация составляет около 20% дефектов в различных продуктах.в. В Соединенных Штатах было проведено обследование 42 предприятий: случайная вибрационная нагрузка может отсеивать от 15 до 25% дефектов, а температурный цикл может отсеивать от 75 до 85%, если комбинация этих двух факторов может достигать 90%.д. Доля типов дефектов продукции, обнаруженных при циклическом изменении температуры: недостаточный расчетный запас: 5%, ошибки производства и изготовления: 33%, дефектные детали: 62%.Описание возникновения неисправностей при экранировании температурных циклических напряжений:Причина выхода продукта из строя, вызванная циклическим изменением температуры, заключается в следующем: когда температура колеблется в пределах верхних и нижних экстремальных температур, продукт производит попеременное расширение и сжатие, что приводит к термическому напряжению и деформации продукта. Если внутри изделия существует переходная температурная лестница (неоднородность температуры) или коэффициенты теплового расширения соседних материалов внутри изделия не совпадают, эти термические напряжения и деформации будут более значительными. Это напряжение и деформация максимальны в районе дефекта, и этот цикл приводит к тому, что дефект становится настолько большим, что в конечном итоге может вызвать разрушение конструкции и спровоцировать электрический отказ. Например, треснутое гальваническое сквозное отверстие со временем полностью трескается вокруг него, вызывая разрыв цепи. Термическое циклирование позволяет паять и наносить покрытие через отверстия на печатных платах... Метод температурно-циклического скрининга особенно подходит для электронных изделий со структурой печатной платы.Режим неисправности, вызванный температурным циклом или воздействием на продукт, следующий:а. Расширение различных микроскопических трещин в покрытии, материале или проволоке.б. Ослабить плохо склеенные соединенияв. Ослабьте неправильно соединенные или заклепочные соединения.д. Расслабьте запрессованные фитинги при недостаточном механическом натяжении.е. Увеличьте контактное сопротивление некачественных паяных соединений или вызовите разрыв цепи.ф. Частицы, химическое загрязнениег. Неисправность уплотнениячас Проблемы с упаковкой, например, приклеивание защитных покрытий.я. Короткое замыкание или обрыв трансформатора и катушкиДж. Потенциометр неисправенк. Плохое соединение сварочных и сварочных точек.л. Контакт для холодной сварким. Многослойная плата из-за неправильного обращения с обрывом цепи, коротким замыканиемн. Короткое замыкание силового транзисторао. Конденсатор, транзистор неисправенп. Неисправность двухрядной интегральной схемыв. Коробка или кабель, почти закороченный из-за повреждения или неправильной сборки.р. Поломка, поломка, задиры материала из-за неправильного обращения... И т.д.с. детали и материалы, выходящие за пределы допусковт. резистор разорвался из-за отсутствия буферного покрытия из синтетического каучукаты. Волос транзистора участвует в заземлении металлической полосы.v. Разрыв слюдяной изоляционной прокладки, что приводит к короткому замыканию транзистора.ш. Неправильная фиксация металлической пластины регулирующей катушки приводит к неравномерности выходной мощности.х. Биполярная вакуумная трубка открыта изнутри при низкой температуре.й. Косвенное замыкание катушкиз. Незаземленные клеммыа1. Дрейф параметров компонентаа2. Компоненты установлены неправильноа3. Неправильно использованные компонентыа4. Неисправность уплотненияВведение параметров напряжения для скрининга температурного циклического стресса:Параметры стресса при скрининге температурного циклического стресса в основном включают в себя следующее: диапазон экстремальных значений высоких и низких температур, время пребывания, изменчивость температуры, номер цикла.Экстремальный диапазон высоких и низких температур: чем больше диапазон экстремальных высоких и низких температур, тем меньше циклов требуется, тем ниже стоимость, но не может превышаться, продукт может выдерживать предел, не вызывает новый принцип неисправности, разница между верхний и нижний пределы изменения температуры - не менее 88°С, типовой диапазон изменения - от -54°С до 55°С.Время выдержки: Кроме того, время выдержки не должно быть слишком коротким, в противном случае будет слишком поздно заставить испытуемый продукт производить изменения теплового расширения и сжатия, что касается времени выдержки, время выдержки разных продуктов различно, вы можно обратиться к соответствующим требованиям спецификации.Количество циклов: Что касается количества циклов скрининга с циклической температурой, оно также определяется с учетом характеристик продукта, сложности, верхнего и нижнего пределов температуры и скорости скрининга. Число скринингов не должно превышаться, в противном случае это приведет к ненужный вред продукту и не может повысить уровень проверки. Количество температурных циклов колеблется от 1 до 10 циклов [обычное скрининг, первичное скрининг] до 20-60 циклов [прецизионное скрининг, вторичное скрининг], для устранения наиболее вероятных дефектов изготовления можно эффективно устранить от 6 до 10 циклов. Помимо эффективности температурного цикла, в основном зависит от изменения температуры поверхности продукта, а не от изменения температуры внутри испытательного бокса.Существует семь основных параметров, влияющих на температурный цикл:(1) Температурный диапазон(2) Количество циклов(3) Температурный режим Чанга(4) Время задержки(5) Скорости воздушного потока(6) Равномерность напряжения(7) Функциональная проверка или нет (рабочие условия продукта)
    ЧИТАТЬ ДАЛЕЕ
  • IEC-60068-2 Комбинированное испытание на конденсацию, температуру и влажность IEC-60068-2 Комбинированное испытание на конденсацию, температуру и влажность
    Oct 14, 2024
    IEC-60068-2 Комбинированное испытание на конденсацию, температуру и влажностьРазница в спецификациях испытаний на влажную теплоту IEC60068-2В спецификации IEC60068-2 предусмотрено пять видов испытаний на влажную жару, в дополнение к обычным испытаниям при 85 ℃/85 % относительной влажности, 40 ℃/93 % относительной влажности. В дополнение к высокой температуре и высокой влажности с фиксированной точкой, существуют еще два специальных теста [IEC60068-2-30, IEC60068-2-38], эти два представляют собой чередующийся цикл влажности и влажности, а также комбинированный цикл температуры и влажности, поэтому тест процесс будет изменять температуру и влажность и даже несколько групп программных связей и циклов, применяемых в полупроводниках, деталях, оборудовании и т. д. ИС. Чтобы смоделировать явление конденсации на открытом воздухе, оцените способность материала предотвращать диффузию воды и газа и ускорять процесс производства продукта. устойчивость к износу, пять спецификаций были организованы в сравнительную таблицу различий в спецификациях испытаний на влажную и жаркую погоду, а точки испытаний были подробно объяснены для испытания в комбинированном цикле с влажной и тепловой обработкой, а также условия испытаний и точки GJB в были дополнены испытания на влажность и жару.IEC60068-2-30 испытание на переменный влажный тепловой циклВ этом испытании используется методика испытания, при которой поочередно поддерживается влажность и температура, чтобы влага проникла в образец и вызвала конденсацию (конденсацию) на поверхности испытываемого продукта, чтобы подтвердить адаптируемость компонента, оборудования или других продуктов в использование, транспортировка и хранение в условиях повышенной влажности и циклических изменений температуры и влажности. Эта спецификация также подходит для больших тестовых образцов. Если оборудование и процесс тестирования должны поддерживать компоненты мощного нагрева для этого теста, эффект будет лучше, чем IEC60068-2-38, высокая температура, используемая в этом тесте, имеет два (40 ° C, 55 ° C), 40 ° C соответствует большинству высокотемпературных сред мира, а 55 ° C соответствует всем высокотемпературным средам мира. Условия испытаний также делятся на [цикл 1, цикл 2], по степени серьезности [цикл 1] выше, чем [Цикл 2].Подходит для побочных продуктов: компонентов, оборудования, различных типов продуктов, подлежащих тестированию.Испытательная среда: сочетание высокой влажности и циклических изменений температуры приводит к образованию конденсата, и можно протестировать три типа условий [использование, хранение, транспортировка ([упаковка не является обязательной)]Испытательный стресс: дыхание вызывает проникновение водяного параДоступно ли питание: ДаНе подходит для: слишком легких и маленьких деталей.Процесс испытаний, а также осмотр и наблюдение после испытаний: проверьте электрические изменения после попадания влаги [не проводить промежуточную проверку]Условия испытаний: Влажность: 95% относительной влажности. [Изменение температуры после поддержания высокой влажности] (низкая температура 25 ± 3 ℃ ← → высокая температура 40 ℃ или 55 ℃).Скорость подъема и охлаждения: нагрев (0,14 ℃/мин), охлаждение (0,08 ~ 0,16 ℃/мин)Цикл 1: Если важными характеристиками являются абсорбция и респираторный эффект, испытуемый образец является более сложным [влажность не менее 90% относительной влажности].Цикл 2: В случае менее очевидных эффектов абсорбции и респираторного воздействия испытуемый образец является более простым [влажность не менее 80% относительной влажности].Сравнительная таблица различий в спецификациях испытаний на влажную жару IEC60068-2Для изделий составного типа используется комбинированный метод испытаний для ускорения подтверждения устойчивости испытуемого образца к деградации в условиях высокой температуры, высокой влажности и низких температур. Этот метод испытаний отличается от дефектов продукции, вызванных дыханием [роса, поглощение влаги] согласно IEC60068-2-30. Жесткость этого испытания выше, чем у других испытаний с влажным тепловым циклом, поскольку во время испытания происходит больше изменений температуры и [дыхания], диапазон температур цикла шире [от 55 ℃ до 65 ℃], а скорость изменения температуры Температурный цикл происходит быстрее [повышение температуры: 0,14 °C/мин становится 0,38 °C/мин, 0,08 °C/мин становится 1,16 °C/мин], кроме того, в отличие от обычного влажного теплового цикла, низкотемпературный цикл Условия -10°C добавляются для увеличения частоты дыхания и замерзания воды, конденсирующейся в зазоре заменителя, что является характеристикой данной спецификации испытаний. Процесс тестирования позволяет проводить испытания мощности и испытания мощности приложенной нагрузки, но он не может повлиять на условия испытаний (колебания температуры и влажности, скорость подъема и охлаждения) из-за нагрева побочного продукта после включения питания. Из-за изменения температуры и влажности во время процесса испытания на верхней части испытательной камеры не может быть капель конденсирующейся воды, попадающих на побочный продукт.Подходит для побочных продуктов: компонентов, уплотнений металлических компонентов, уплотнений выводных концов.Условия испытаний: сочетание высокой температуры, высокой влажности и низких температур.Испытательный стресс: ускоренное дыхание + замороженная вода.Можно ли включить питание: можно ли включать и внешнюю электрическую нагрузку (не может влиять на условия испытательной камеры из-за мощного нагрева)Неприменимо: Не может заменить влажное тепло и попеременное влажное тепло. Этот тест используется для выявления дефектов, отличных от дыхания.Процесс испытаний, а также осмотр и наблюдение после испытаний: проверьте электрические изменения после воздействия влаги [проверьте в условиях высокой влажности и выньте после испытания]Условия испытаний: цикл влажного тепла (25, пожалуйста, 65 + 2 ℃ / 93 +/- 3% относительной влажности), пожалуйста, низкотемпературный цикл (25, пожалуйста, 65 + 2 ℃ / 93 + 3% относительной влажности - - 10 + 2 ℃) X5cycle = 10 циклСкорость подъема и охлаждения: нагрев (0,38 ℃/мин), охлаждение (1,16 ℃/мин)Цикл тепла и влажности (25 ←→65±2℃/93±3% относительной влажности)Низкотемпературный цикл (25 ←→65±2℃/93±3% относительной влажности →-10±2℃)GJB150-09 испытание на влажную жаруИнструкции: Испытание GJB150-09 на влагу и тепло предназначено для подтверждения способности оборудования выдерживать воздействие горячей и влажной атмосферы, подходит для оборудования, хранящегося и используемого в жарких и влажных средах, оборудования, подверженного высокой влажности, или оборудования, которое может есть потенциальные проблемы, связанные с жарой и влажностью. Жаркие и влажные места могут встречаться в течение всего года в тропиках, сезонно в средних широтах, а также в оборудовании, подвергающемся комбинированным изменениям давления, температуры и влажности, с особым упором на 60 ° C / 95% относительной влажности. Такая высокая температура и влажность не встречаются в природе и не имитируют эффект сырости и тепла после солнечного излучения, но могут найти части оборудования с потенциальными проблемами, но не могут воспроизвести сложную температуру и влажность окружающей среды, оценить долгосрочный эффект и не может воспроизвести воздействие влажности, связанное с окружающей средой с низкой влажностью.Соответствующее оборудование для испытаний комбинированного цикла конденсации, влажного замораживания, влажного тепла: испытательная камера с постоянной температурой и влажностью.
    ЧИТАТЬ ДАЛЕЕ
  • Температурный циклический тест Температурный циклический тест
    Oct 12, 2024
    Температурный циклический тестТемпературный цикл, чтобы имитировать температурные условия, с которыми сталкиваются различные электронные компоненты в реальной среде использования, изменение диапазона разницы температур окружающей среды и быстрое изменение температуры подъема и падения может обеспечить более строгие условия испытаний, но следует отметить, что дополнительные эффекты может быть вызвано испытанием материала. Для соответствующих международных стандартных условий испытаний на температурный цикл существует два способа установки изменения температуры. Macroshow Technology предоставляет интуитивно понятный интерфейс настройки, который пользователям удобно настраивать в соответствии со спецификацией. Вы можете выбрать общее время линейного изменения или установить скорость подъема и охлаждения со скоростью изменения температуры в минуту.Список международных спецификаций для испытаний на циклическое изменение температуры:Общее время изменения скорости (мин): JESD22-A104, MIL-STD-8831, CR200315Изменение температуры в минуту (℃/мин): IEC 60749, IPC-9701, Bellcore-GR-468, MIL-2164.Пример: проверка надежности бессвинцовой пайкиИнструкции: Для проверки надежности бессвинцовых паяных соединений различные условия испытаний также будут отличаться с точки зрения режима настройки изменения температуры. Например, (JEDEC JESD22-A104) будет указывать время изменения температуры с общим временем [10 минут], в то время как другие условия будут указывать скорость изменения температуры с [10 ℃/мин], например, от 100 ℃ до 0 ℃. При изменении температуры на 10 градусов в минуту, то есть общее время изменения температуры составляет 10 минут.100℃ [10мин] ←→0℃[10мин], линейное изменение: 10℃/мин, 6500циклов-40℃[5мин] ←→125℃ [5мин], линейное изменение: 10мин,Проверка 200 циклов один раз, испытание на растяжение 2000 циклов [JEDEC JESD22-A104]-40℃(15мин) ←→125℃(15мин), линейное изменение: 15мин, 2000цикловПример: светодиодное автомобильное освещение (светодиод высокой мощности).Условия испытания температурного цикла светодиодных автомобильных фонарей составляют от -40 ° C до 100 ° C в течение 30 минут, общее время изменения температуры составляет 5 минут, если преобразовать в скорость изменения температуры, оно составляет 28 градусов в минуту (28 ° C / мин). ).Условия испытания: -40℃(30мин) ←→100℃(30мин), линейное изменение: 5мин. 
    ЧИТАТЬ ДАЛЕЕ
  • Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температуры Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температуры
    Oct 12, 2024
    Надежность оборудования для испытаний на воздействие окружающей среды в сочетании с многоканальными системами контроля и обнаружения температуры Оборудование для испытаний на воздействие окружающей среды включает в себя испытательную камеру с постоянной температурой и влажностью, камеру для испытаний на горячий и холодный удар, камеру для испытаний на температурный цикл, безветренную печь... Все это испытательное оборудование находится в смоделированной среде температуры и воздействия влажности на продукт, чтобы выяснить В процессе проектирования, производства, хранения, транспортировки и использования могут возникнуть дефекты продукции, ранее только моделировалась температура воздуха в испытательной зоне, но в новых международных стандартах и новых условиях испытаний на международном заводе начинаются требования, основанные на температуре воздуха. нет. Это температура поверхности испытуемого продукта. Кроме того, температуру поверхности также следует измерять и фиксировать синхронно во время процесса испытаний для последующего анализа. Соответствующее оборудование для испытаний на воздействие окружающей среды должно сочетаться с контролем температуры поверхности, а применение измерения температуры поверхности обобщается следующим образом.   Применение определения температуры испытательной камеры с постоянной температурой и влажностью:   Описание: Испытательная камера с постоянной температурой и влажностью в процессе испытаний в сочетании с многоканальным обнаружением температуры, высокой температурой и влажностью, конденсацией (конденсатом), комбинированной температурой и влажностью, медленным температурным циклом... Во время процесса испытания датчик прикрепленный к поверхности тестируемого продукта, который можно использовать для измерения температуры поверхности или внутренней температуры тестируемого продукта. С помощью этого многодорожечного модуля определения температуры заданные условия, фактическая температура и влажность, температура поверхности тестируемого продукта, а также те же измерения и записи могут быть интегрированы в файл синхронной кривой для последующего хранения и анализа. Применение контроля и обнаружения температуры поверхности камеры для испытаний на термический удар: [время выдержки на основе контроля температуры поверхности], [запись измерения температуры поверхности в процессе температурного удара]   Описание: 8-канальный датчик температуры крепится к поверхности тестируемого продукта и применяется в процессе температурного шока. Время пребывания можно отсчитывать в обратном направлении по достижению температуры поверхности. Во время процесса удара условия настройки, температура испытания, температура поверхности испытуемого продукта, а также те же измерения и записи могут быть интегрированы в синхронную кривую. Приложение для контроля и обнаружения температуры поверхности испытательной камеры с температурным циклом: [Изменчивость температуры температурного цикла и время выдержки контролируются в зависимости от температуры поверхности тестируемого продукта]   Описание: Испытание на температурный цикл отличается от испытания на температурный шок. Испытание на температурный шок использует максимальную энергию системы для изменения температуры между высокими и низкими температурами, а скорость изменения температуры достигает 30 ~ 40 ℃ / мин. Испытание температурного цикла требует процесса изменения высоких и низких температур, и его изменчивость температуры можно устанавливать и контролировать. Однако новые спецификации и условия испытаний международных производителей начали требовать, чтобы изменчивость температуры относилась к температуре поверхности тестируемого продукта, а не к температуре воздуха, а также к контролю изменчивости температуры в соответствии со спецификациями текущего температурного цикла. Согласно характеристикам поверхности испытательного продукта [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... Кроме того, время пребывания при высоких и низких температурах также может быть основано на испытательной поверхности, а не температуры воздуха. Применения контроля и обнаружения температуры поверхности испытательной камеры для циклического стресс-скрининга:   Инструкции: Машина для испытания на стресс-скрининг с температурным циклом в сочетании с многорельсовым измерением температуры. При изменении температуры стресс-скрининга вы можете использовать [температуру воздуха] или [температуру поверхности испытуемого продукта] для контроля изменчивости температуры, кроме того, В резидентном процессе с высокой и низкой температурой обратную величину времени также можно контролировать в зависимости от поверхности испытуемого продукта. В соответствии с соответствующими спецификациями (GJB1032, IEST) и требованиями международных организаций, в соответствии с определением GJB1032 в точке измерения времени воздействия и температуры при стресс-скрининге, 1. Количество термопар, закрепленных на изделии, должно быть не менее 3, а точка измерения температуры системы охлаждения должна быть не менее 6, 2. Убедитесь, что температура 2/3 термопар на изделии установлена на уровне ± 10 ℃, кроме того, в соответствии с требованиями IEST (Международного Ассоциация по экологическим наукам и технологиям) время пребывания должно достигать времени стабилизации температуры плюс 5 минут или времени испытания производительности.   Приложение для определения температуры поверхности без воздушной печи (испытательная камера с естественной конвекцией):   Описание: Благодаря сочетанию безветренной печи (испытательная камера с естественной конвекцией) и многоканального модуля определения температуры создается температурная среда без вентилятора (естественная конвекция) и интегрирован соответствующий тест определения температуры. Это решение может применяться для реальных испытаний электронных продуктов при температуре окружающей среды (таких как: облачный сервер, 5G, салон электромобиля, помещение без кондиционирования воздуха, солнечный инвертор, большой ЖК-телевизор, домашний интернет-распределитель, офис 3C, ноутбук, настольный компьютер). , игровая консоль....... и т. д.).    
    ЧИТАТЬ ДАЛЕЕ
1 2
В общей сложности 2страницы

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
представлять на рассмотрение

Дом

Продукты

WhatsApp

связаться с нами